Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains

Objective: To explore the effects of exogenous sulfate on the efficiency of chromium(VI) metabolism of three chromium(VI)-resistant Escherichia coli strains (eChrA / eChrB / eChrAB) by adding chromium(VI)-resistance genes chrA and/or chrB, for better understanding and further application of these Cr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xinglong Li, Qi Yin, Ruijia Gu, Mei Li, Jing Yan, Yuan Liu, Yanlun Qiu, Qunhua Bai, Yingli Li, Yan Ji, Jieying Gao, Hong Xiao
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/6e3bb35d53a8462186711263c9f0bda2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6e3bb35d53a8462186711263c9f0bda2
record_format dspace
spelling oai:doaj.org-article:6e3bb35d53a8462186711263c9f0bda22021-11-18T04:43:16ZEffects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains0147-651310.1016/j.ecoenv.2021.112984https://doaj.org/article/6e3bb35d53a8462186711263c9f0bda22021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0147651321010964https://doaj.org/toc/0147-6513Objective: To explore the effects of exogenous sulfate on the efficiency of chromium(VI) metabolism of three chromium(VI)-resistant Escherichia coli strains (eChrA / eChrB / eChrAB) by adding chromium(VI)-resistance genes chrA and/or chrB, for better understanding and further application of these Cr(VI)-resistant strains in environmental and industrial chromium removal. Methods: Based on three engineered Cr(VI)-resistant strains exposed to different concentrations of sulfate: i) Evaluation of Cr(VI) metabolism characteristics, including the growth rate, the Cr(VI) tolerance, the removal, absorption and efflux capacity of Cr(VI); ii) Detection the expressions of Cr(VI) resistance-related genes (chrA and chrB), and sulfate channel protein-related genes (sbp, cysA, cysU and cysW genes) by RT-qPCR. Results: Exogenous sulfate enhanced the Cr(VI) tolerance and the removal rate of these three engineered Cr(VI)-resistant strains, and promoted their growth rate under Cr(VI) stress, while suppressed their absorption and efflux capacity. Under a certain sulfate concentration, the Cr(VI) tolerance, removal ability and efflux capacity of these three strains were ranked as follow: eChrAB > eChrA > eChrB, while ranked as eChrB > eChrA > eChrAB for the Cr(VI) absorption rate, respectively. Opposite to the Cr(VI) treatment, exogenous sulfate suppressed the transcription levels of the Cr(VI) resistance-related genes (chrA and chrB) with gradually increased concentrations, and reduced those of sulfate channel protein related genes (sbp,cysA, cysU and cysW) under the medium and high concentrations. Conclusion: Sulfate can enhance the Cr(VI) tolerance and growth of Cr(VI)-resistant strains, via inhibiting the Cr(VI) absorption and efflux in a concentration-dependent manner. The underlying mode of action might be the competition of transport channels between sulfate and Cr(VI), and the suppression of sulfate channel protein related genes expressions by exogenous sulfate. Our results demonstrated an appropriate supplication of exogenous sulfate could contribute to the Cr(VI) pollution management by genes chrA/chrB related Cr(VI)-resistant strains. Additionally, the engineered E. coli strain eChrAB showed more potential for the actual Cr(VI) pollution application than strain eChrA and eChrB.Xinglong LiQi YinRuijia GuMei LiJing YanYuan LiuYanlun QiuQunhua BaiYingli LiYan JiJieying GaoHong XiaoElsevierarticleSulfatechrA/chrBCr(VI)-resistanceCr(VI) metabolismEnvironmental pollutionTD172-193.5Environmental sciencesGE1-350ENEcotoxicology and Environmental Safety, Vol 228, Iss , Pp 112984- (2021)
institution DOAJ
collection DOAJ
language EN
topic Sulfate
chrA/chrB
Cr(VI)-resistance
Cr(VI) metabolism
Environmental pollution
TD172-193.5
Environmental sciences
GE1-350
spellingShingle Sulfate
chrA/chrB
Cr(VI)-resistance
Cr(VI) metabolism
Environmental pollution
TD172-193.5
Environmental sciences
GE1-350
Xinglong Li
Qi Yin
Ruijia Gu
Mei Li
Jing Yan
Yuan Liu
Yanlun Qiu
Qunhua Bai
Yingli Li
Yan Ji
Jieying Gao
Hong Xiao
Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains
description Objective: To explore the effects of exogenous sulfate on the efficiency of chromium(VI) metabolism of three chromium(VI)-resistant Escherichia coli strains (eChrA / eChrB / eChrAB) by adding chromium(VI)-resistance genes chrA and/or chrB, for better understanding and further application of these Cr(VI)-resistant strains in environmental and industrial chromium removal. Methods: Based on three engineered Cr(VI)-resistant strains exposed to different concentrations of sulfate: i) Evaluation of Cr(VI) metabolism characteristics, including the growth rate, the Cr(VI) tolerance, the removal, absorption and efflux capacity of Cr(VI); ii) Detection the expressions of Cr(VI) resistance-related genes (chrA and chrB), and sulfate channel protein-related genes (sbp, cysA, cysU and cysW genes) by RT-qPCR. Results: Exogenous sulfate enhanced the Cr(VI) tolerance and the removal rate of these three engineered Cr(VI)-resistant strains, and promoted their growth rate under Cr(VI) stress, while suppressed their absorption and efflux capacity. Under a certain sulfate concentration, the Cr(VI) tolerance, removal ability and efflux capacity of these three strains were ranked as follow: eChrAB > eChrA > eChrB, while ranked as eChrB > eChrA > eChrAB for the Cr(VI) absorption rate, respectively. Opposite to the Cr(VI) treatment, exogenous sulfate suppressed the transcription levels of the Cr(VI) resistance-related genes (chrA and chrB) with gradually increased concentrations, and reduced those of sulfate channel protein related genes (sbp,cysA, cysU and cysW) under the medium and high concentrations. Conclusion: Sulfate can enhance the Cr(VI) tolerance and growth of Cr(VI)-resistant strains, via inhibiting the Cr(VI) absorption and efflux in a concentration-dependent manner. The underlying mode of action might be the competition of transport channels between sulfate and Cr(VI), and the suppression of sulfate channel protein related genes expressions by exogenous sulfate. Our results demonstrated an appropriate supplication of exogenous sulfate could contribute to the Cr(VI) pollution management by genes chrA/chrB related Cr(VI)-resistant strains. Additionally, the engineered E. coli strain eChrAB showed more potential for the actual Cr(VI) pollution application than strain eChrA and eChrB.
format article
author Xinglong Li
Qi Yin
Ruijia Gu
Mei Li
Jing Yan
Yuan Liu
Yanlun Qiu
Qunhua Bai
Yingli Li
Yan Ji
Jieying Gao
Hong Xiao
author_facet Xinglong Li
Qi Yin
Ruijia Gu
Mei Li
Jing Yan
Yuan Liu
Yanlun Qiu
Qunhua Bai
Yingli Li
Yan Ji
Jieying Gao
Hong Xiao
author_sort Xinglong Li
title Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains
title_short Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains
title_full Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains
title_fullStr Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains
title_full_unstemmed Effects of exogenous sulfate on the chromium(VI) metabolism of chromium(VI)-resistant engineered strains
title_sort effects of exogenous sulfate on the chromium(vi) metabolism of chromium(vi)-resistant engineered strains
publisher Elsevier
publishDate 2021
url https://doaj.org/article/6e3bb35d53a8462186711263c9f0bda2
work_keys_str_mv AT xinglongli effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT qiyin effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT ruijiagu effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT meili effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT jingyan effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT yuanliu effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT yanlunqiu effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT qunhuabai effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT yinglili effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT yanji effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT jieyinggao effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
AT hongxiao effectsofexogenoussulfateonthechromiumvimetabolismofchromiumviresistantengineeredstrains
_version_ 1718425106592563200