Poly(d,l-lactide-co-glycolide)–chitosan composite particles for the treatment of lung cancer
Neha Arya, Dhirendra S Katti Department of Biological Sciences and Bioengineering, Indian Institute of Technology – Kanpur, Kanpur, Uttar Pradesh, India Abstract: Tumor heterogeneity makes combination chemotherapy one of the preferred modes of treatment regimens. In this work, sequential...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e43d04e273d4987a00da133caea127b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Neha Arya, Dhirendra S Katti Department of Biological Sciences and Bioengineering, Indian Institute of Technology – Kanpur, Kanpur, Uttar Pradesh, India Abstract: Tumor heterogeneity makes combination chemotherapy one of the preferred modes of treatment regimens. In this work, sequential exposure of two anticancer agents, paclitaxel (Tx) followed by topotecan (TPT), was shown to have a synergistic effect on non-small cell lung cancer (NSCLC) cell line, NCI-H460. In order to improve patient compliance, the aforementioned concept was translated into a drug delivery system comprising of poly(d,l-lactide-co-glycolide) (PLGA)–chitosan composite particles. TPT-containing chitosan micro-/nanoparticles were prepared by the facile technique of electrospraying and encapsulated within PLGA microparticles using emulsion-solvent evaporation technique for delayed release of TPT. The formulation containing Tx- and TPT-loaded composite particles demonstrated synergism when exposed to NCI-H460 cellular aggregates (tumoroids) generated in vitro. Overall, the results of this study demonstrated the potential of the formulation containing Tx and PLGA–chitosan (TPT-loaded) composite particles for the treatment of lung cancer. Keywords: drug delivery system, solid tumor, paclitaxel, topotecan, sequential admini­stration |
---|