Prediction of treatment outcome in burning mouth syndrome patients using machine learning based on clinical data
Abstract The purpose of this study is to apply a machine learning approach to predict whether patients with burning mouth syndrome (BMS) respond to the initial approach and clonazepam therapy based on clinical data. Among the patients with the primary type of BMS who visited the clinic from 2006 to...
Guardado en:
Autores principales: | Moon-Jong Kim, Pil-Jong Kim, Hong-Gee Kim, Hong-Seop Kho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e44f0097a6f409cab7ce84b00053808 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Burning Mouth Syndrome: An Enigma
por: Mubeen,K, et al.
Publicado: (2011) -
Therapeutic Dose of Amitriptyline for Older Patients with Burning Mouth Syndrome
por: Suga T, et al.
Publicado: (2019) -
Low-dose aripiprazole for refractory burning mouth syndrome
por: Umezaki Y, et al.
Publicado: (2016) -
Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data
por: Ji Hwan Park, et al.
Publicado: (2020) -
TDCS neuromodulation to enhance cognitive and proprioceptive treatment of Burning Mouth Syndrome
por: Francisco José Sánchez Cuesta, et al.
Publicado: (2021)