Rank and order: evaluating the performance of SNPs for individual assignment in a non-model organism.

Single nucleotide polymorphisms (SNPs) are valuable tools for ecological and evolutionary studies. In non-model species, the use of SNPs has been limited by the number of markers available. However, new technologies and decreasing technology costs have facilitated the discovery of a constantly incre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Caroline G Storer, Carita E Pascal, Steven B Roberts, William D Templin, Lisa W Seeb, James E Seeb
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6e465bd8c6694c85afda40abf7be20ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single nucleotide polymorphisms (SNPs) are valuable tools for ecological and evolutionary studies. In non-model species, the use of SNPs has been limited by the number of markers available. However, new technologies and decreasing technology costs have facilitated the discovery of a constantly increasing number of SNPs. With hundreds or thousands of SNPs potentially available, there is interest in comparing and developing methods for evaluating SNPs to create panels of high-throughput assays that are customized for performance, research questions, and resources. Here we use five different methods to rank 43 new SNPs and 71 previously published SNPs for sockeye salmon: F(ST), informativeness (I(n)), average contribution to principal components (LC), and the locus-ranking programs BELS and WHICHLOCI. We then tested the performance of these different ranking methods by creating 48- and 96-SNP panels of the top-ranked loci for each method and used empirical and simulated data to obtain the probability of assigning individuals to the correct population using each panel. All 96-SNP panels performed similarly and better than the 48-SNP panels except for the 96-SNP BELS panel. Among the 48-SNP panels, panels created from F(ST), I(n), and LC ranks performed better than panels formed using the top-ranked loci from the programs BELS and WHICHLOCI. The application of ranking methods to optimize panel performance will become more important as more high-throughput assays become available.