A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware
Artificial neural networks (ANNs), like convolutional neural networks (CNNs), have achieved the state-of-the-art results for many machine learning tasks. However, inference with large-scale full-precision CNNs must cause substantial energy consumption and memory occupation, which seriously hinders t...
Guardado en:
Autores principales: | Chenglong Zou, Xiaoxin Cui, Yisong Kuang, Kefei Liu, Yuan Wang, Xinan Wang, Ru Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e4eedc885474c579ffec00f6a476c8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Utilization of Unsigned Inputs for NAND Flash-Based Parallel and High-Density Synaptic Architecture in Binary Neural Networks
por: Sung-Tae Lee, et al.
Publicado: (2021) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Fangxin Liu, et al.
Publicado: (2021) -
Survey of community discovery method of heterogeneous network
por: Wanzhen ZHOU, et al.
Publicado: (2021) -
Kohonen Network-Based Adaptation of Non Sequential Data for Use in Convolutional Neural Networks
por: Michał Bereta
Publicado: (2021) -
STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM
por: Van-Tinh Nguyen, et al.
Publicado: (2021)