Corneal confocal microscopy identifies small fibre damage and progression of diabetic neuropathy
Abstract Accurately quantifying the progression of diabetic peripheral neuropathy is key to identify individuals who will progress to foot ulceration and to power clinical intervention trials. We have undertaken detailed neuropathy phenotyping to assess the longitudinal utility of different measures...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e4fe82f035548e3b5afb9e01bf828a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Accurately quantifying the progression of diabetic peripheral neuropathy is key to identify individuals who will progress to foot ulceration and to power clinical intervention trials. We have undertaken detailed neuropathy phenotyping to assess the longitudinal utility of different measures of neuropathy in patients with diabetes. Nineteen patients with diabetes (age 52.5 ± 14.7 years, duration of diabetes 26.0 ± 13.8 years) and 19 healthy controls underwent assessment of symptoms and signs of neuropathy, quantitative sensory testing, autonomic nerve function, neurophysiology, intra-epidermal nerve fibre density (IENFD) and corneal confocal microscopy (CCM) to quantify corneal nerve fibre density (CNFD), branch density (CNBD) and fibre length (CNFL). Mean follow-up was 6.5 years. Glycated haemoglobin (p = 0.04), low-density lipoprotein-cholesterol (LDL-C) (p = 0.0009) and urinary albumin creatinine ratio (p < 0.0001) improved. Neuropathy symptom profile (p = 0.03), neuropathy disability score (p = 0.04), vibration perception threshold (p = 0.02), cold perception threshold (p = 0.006), CNFD (p = 0.03), CNBD (p < 0.0001), CNFL (p < 0.0001), IENFD (p = 0.04), sural (p = 0.02) and peroneal motor nerve conduction velocity (p = 0.03) deteriorated significantly. Change (∆) in CNFL correlated with ∆CPT (p = 0.006) and ∆Expiration/Inspiration ratio (p = 0.002) and ∆IENFD correlated with ∆CNFD (p = 0.005), ∆CNBD (p = 0.02) and ∆CNFL (p = 0.01). This study shows worsening of diabetic neuropathy across a range of neuropathy measures, especially CCM, despite an improvement in HbA1c and LDL-C. It further supports the utility of CCM as a rapid, non-invasive surrogate measure of diabetic neuropathy. |
---|