Strain of newly – developed composites relationship in flexural tests

Extending service life and preventing demolition of existing structures are the primary goals of structural strengthening and rehabilitation. Fiber-reinforced polymer (FRP) composites have been the most common type of composite in the realm of structural strengthening applications. In recent years,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hashem Jahangir, Mohammad Reza Esfahani
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2018
Materias:
Acceso en línea:https://doaj.org/article/6e55fc40a8a54a34927cba13ac5ef787
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Extending service life and preventing demolition of existing structures are the primary goals of structural strengthening and rehabilitation. Fiber-reinforced polymer (FRP) composites have been the most common type of composite in the realm of structural strengthening applications. In recent years, as a new type of composite, epoxy is replaced by an inorganic matrix, named fiber reinforced cementitious mortar (FRCM), and have attracted a great deal of interest among researchers. Focusing of these kind of novel composites, this paper tries to find a connection between FRCM composites behaviour, as their maximum fiber strain, in flexural and direct shear tests. To achieve this goal, a cross section analysis of previous research works on strengthened RC beams with one layer of composites was conducted and the maximum strain of the fibers was obtained. Calculated fiber strains in flexural strengthening specimens compared with corresponding measured maximum fiber strains in direct shear test specimens. Comparison of results show that the average of maximum fiber strain obtained from flexural specimens is in good agreement with corresponding one measured in direct shear test specimens. Consequently, maximum fiber strains could be designated as the lost link between flexural and direct shear tests as two separated part of a chain.