Ground State Solution for an Autonomous Nonlinear Schrödinger System
In this paper, we study the following autonomous nonlinear Schrödinger system (discussed in the paper), where λ,μ, and ν are positive parameters; 2∗=2N/N−2 is the critical Sobolev exponent; and f satisfies general subcritical growth conditions. With the help of the Pohožaev manifold, a ground state...
Guardado en:
Autores principales: | Min Liu, Jiu Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e5819d95d7f4f3587c6151d55206aee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Schrodinger Equation
por: Neveen G. A. Farag, et al.
Publicado: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
por: Pengxue Cui, et al.
Publicado: (2021) -
Linear Barycentric Rational Method for Solving Schrodinger Equation
por: Peichen Zhao, et al.
Publicado: (2021) -
Finite-Time Stability of Solutions for Nonlinear q-Fractional Difference Coupled Delay Systems
por: Jingfeng Wang, et al.
Publicado: (2021) -
Retraction Note: New applications of Schrödinger type inequalities to the existence and uniqueness of Schrödingerean equilibrium
por: Jianjie Wang, et al.
Publicado: (2021)