High-Resolution Boundary Refined Convolutional Neural Network for Automatic Agricultural Greenhouses Extraction from GaoFen-2 Satellite Imageries
Agricultural greenhouses (AGs) are an important component of modern facility agriculture, and accurately mapping and dynamically monitoring their distribution are necessary for agricultural scientific management and planning. Semantic segmentation can be adopted for AG extraction from remote sensing...
Guardado en:
Autores principales: | Xiaoping Zhang, Bo Cheng, Jinfen Chen, Chenbin Liang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e58c899e6f546afa0684d38e63dd1e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images
por: Yueming Duan, et al.
Publicado: (2021) -
Automatic Interferogram Selection for SBAS-InSAR Based on Deep Convolutional Neural Networks
por: Yufang He, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) - Gong neng gao fen zi xue bao Journal of functional polymers.
-
Comparative Investigation of the Effect of Pre and Post -Enzymatic Refining on OCC Pulp Properties
por: Nazbakht Hezbi, et al.
Publicado: (2014)