An extended super/subloading surface model for soft rock considering structure degradation.

The strain-softening and dilatancy behavior of soft rock is affected by the loading history and the development of structure. This study regards soft rock as a structured and overconsolidated soil and develops a new elastoplastic model based on the classical super yield surface Cam-clay model. The p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kai Cui, Bin Hu, Aneng Cui, Jing Li, Erjian Wei, Zhen Zhang
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6e7fa45e28c44bdcb416998de6152455
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The strain-softening and dilatancy behavior of soft rock is affected by the loading history and the development of structure. This study regards soft rock as a structured and overconsolidated soil and develops a new elastoplastic model based on the classical super yield surface Cam-clay model. The proposed model is capable of capturing the effect of yield surface shape on the mechanical behavior of soft rock by introducing a new yield function. The proposed model is validated against the triaxial test results on different types of soft rocks under drained condition. The comparison results indicate that the proposed model is suitable for describing the constitutive behavior of soft rock.