A Fuzzy Logic Model for Early Warning of Algal Blooms in a Tidal-Influenced River
Algal blooms are one of the most serious threats to water resources, and their early detection remains a challenge in eutrophication management worldwide. In recent years, with more widely available real-time auto-monitoring data and the advancement of computational capabilities, fuzzy logic has bec...
Guardado en:
Autores principales: | Hanjie Yang, Zhaoting Chen, Yingxin Ye, Gang Chen, Fantang Zeng, Changjin Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e857046e46b4d25abb7516e5289388f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Early Warning of Harmful Algal Bloom Risk Using Satellite Ocean Color and Lagrangian Particle Trajectories
por: Junfang Lin, et al.
Publicado: (2021) -
A bloom of Azadinium polongum in coastal waters off Peru
por: Tillmann,Urban, et al.
Publicado: (2017) -
Temporal dynamics of the phytoplankton community associated with environmental factors and harmful algal blooms in Acapulco Bay, Mexico
por: Cervantes-Urieta,Víctor A., et al.
Publicado: (2021) -
Predicting coastal algal blooms with environmental factors by machine learning methods
por: Peixuan Yu, et al.
Publicado: (2021) -
Metabarcoding Analysis of Harmful Algal Bloom Species in the Western Pacific Seamount Regions
por: Qing Xu, et al.
Publicado: (2021)