Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering
Abstract A simple high-throughput approach is presented in this work to fabricate the Au nanoparticles (NPs)/nanogap/Au NPs structure for surface enhanced Raman scattering (SERS). This plasmonic nanostructure can be prepared feasibly by the combination of rapid thermal annealing (RTA), atomic layer...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6e968ae05ec84c25979afbde82f8391f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6e968ae05ec84c25979afbde82f8391f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6e968ae05ec84c25979afbde82f8391f2021-12-02T11:52:30ZAtomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering10.1038/s41598-017-05533-42045-2322https://doaj.org/article/6e968ae05ec84c25979afbde82f8391f2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05533-4https://doaj.org/toc/2045-2322Abstract A simple high-throughput approach is presented in this work to fabricate the Au nanoparticles (NPs)/nanogap/Au NPs structure for surface enhanced Raman scattering (SERS). This plasmonic nanostructure can be prepared feasibly by the combination of rapid thermal annealing (RTA), atomic layer deposition (ALD) and chemical etching process. The nanogap size between Au NPs can be easily and precisely tuned to nanometer scale by adjusting the thickness of sacrificial ALD Al2O3 layer. Finite-difference time-domain (FDTD) simulation data indicate that most of enhanced field locates at Au NPs nanogap area. Moreover, Au NPs/nanogap/Au NPs structure with smaller gap exhibits the larger electromagnetic field. Experimental results agree well with FDTD simulation data, the plasmonic structure with smaller nanogap size has a stronger Raman intensity. There is highly strong plasmonic coupling in the Au nanogap, so that a great SERS effect is obtained when detecting methylene blue (MB) molecules with an enhancement factor (EF) over 107. Furthermore, this plasmonic nanostructure can be designed on large area with high density and high intensity hot spots. This strategy of producing nanoscale metal gap on large area has significant implications for ultrasensitive Raman detection and practical SERS application.Yan-Qiang CaoKang QinLin ZhuXu QianXue-Jin ZhangDi WuAi-Dong LiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yan-Qiang Cao Kang Qin Lin Zhu Xu Qian Xue-Jin Zhang Di Wu Ai-Dong Li Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering |
description |
Abstract A simple high-throughput approach is presented in this work to fabricate the Au nanoparticles (NPs)/nanogap/Au NPs structure for surface enhanced Raman scattering (SERS). This plasmonic nanostructure can be prepared feasibly by the combination of rapid thermal annealing (RTA), atomic layer deposition (ALD) and chemical etching process. The nanogap size between Au NPs can be easily and precisely tuned to nanometer scale by adjusting the thickness of sacrificial ALD Al2O3 layer. Finite-difference time-domain (FDTD) simulation data indicate that most of enhanced field locates at Au NPs nanogap area. Moreover, Au NPs/nanogap/Au NPs structure with smaller gap exhibits the larger electromagnetic field. Experimental results agree well with FDTD simulation data, the plasmonic structure with smaller nanogap size has a stronger Raman intensity. There is highly strong plasmonic coupling in the Au nanogap, so that a great SERS effect is obtained when detecting methylene blue (MB) molecules with an enhancement factor (EF) over 107. Furthermore, this plasmonic nanostructure can be designed on large area with high density and high intensity hot spots. This strategy of producing nanoscale metal gap on large area has significant implications for ultrasensitive Raman detection and practical SERS application. |
format |
article |
author |
Yan-Qiang Cao Kang Qin Lin Zhu Xu Qian Xue-Jin Zhang Di Wu Ai-Dong Li |
author_facet |
Yan-Qiang Cao Kang Qin Lin Zhu Xu Qian Xue-Jin Zhang Di Wu Ai-Dong Li |
author_sort |
Yan-Qiang Cao |
title |
Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering |
title_short |
Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering |
title_full |
Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering |
title_fullStr |
Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering |
title_full_unstemmed |
Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering |
title_sort |
atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable nanogap for surface-enhanced raman scattering |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/6e968ae05ec84c25979afbde82f8391f |
work_keys_str_mv |
AT yanqiangcao atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering AT kangqin atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering AT linzhu atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering AT xuqian atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering AT xuejinzhang atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering AT diwu atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering AT aidongli atomiclayerdepositionassistedformationofwaferscaledoublelayermetalnanoparticleswithtunablenanogapforsurfaceenhancedramanscattering |
_version_ |
1718395051556470784 |