Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury.
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding th...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ea059e14c2e4654a179194797e7b1af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6ea059e14c2e4654a179194797e7b1af |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6ea059e14c2e4654a179194797e7b1af2021-11-25T06:05:28ZDifferential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury.1932-620310.1371/journal.pone.0104565https://doaj.org/article/6ea059e14c2e4654a179194797e7b1af2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25105800/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.Marcus K GiacciLachlan WheelerSarah LovettEmma DishingtonBernadette MajdaCarole A BartlettEmma ThorntonElizabeth Harford-WrightAnna LeonardRobert VinkAlan R HarveyJan ProvisSarah A DunlopNathan S HartStuart HodgettsRiccardo NatoliCorinna Van Den HeuvelMelinda FitzgeraldPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 8, p e104565 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Marcus K Giacci Lachlan Wheeler Sarah Lovett Emma Dishington Bernadette Majda Carole A Bartlett Emma Thornton Elizabeth Harford-Wright Anna Leonard Robert Vink Alan R Harvey Jan Provis Sarah A Dunlop Nathan S Hart Stuart Hodgetts Riccardo Natoli Corinna Van Den Heuvel Melinda Fitzgerald Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
description |
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types. |
format |
article |
author |
Marcus K Giacci Lachlan Wheeler Sarah Lovett Emma Dishington Bernadette Majda Carole A Bartlett Emma Thornton Elizabeth Harford-Wright Anna Leonard Robert Vink Alan R Harvey Jan Provis Sarah A Dunlop Nathan S Hart Stuart Hodgetts Riccardo Natoli Corinna Van Den Heuvel Melinda Fitzgerald |
author_facet |
Marcus K Giacci Lachlan Wheeler Sarah Lovett Emma Dishington Bernadette Majda Carole A Bartlett Emma Thornton Elizabeth Harford-Wright Anna Leonard Robert Vink Alan R Harvey Jan Provis Sarah A Dunlop Nathan S Hart Stuart Hodgetts Riccardo Natoli Corinna Van Den Heuvel Melinda Fitzgerald |
author_sort |
Marcus K Giacci |
title |
Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
title_short |
Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
title_full |
Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
title_fullStr |
Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
title_full_unstemmed |
Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
title_sort |
differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/6ea059e14c2e4654a179194797e7b1af |
work_keys_str_mv |
AT marcuskgiacci differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT lachlanwheeler differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT sarahlovett differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT emmadishington differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT bernadettemajda differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT caroleabartlett differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT emmathornton differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT elizabethharfordwright differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT annaleonard differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT robertvink differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT alanrharvey differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT janprovis differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT sarahadunlop differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT nathanshart differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT stuarthodgetts differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT riccardonatoli differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT corinnavandenheuvel differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury AT melindafitzgerald differentialeffectsof670and830nmrednearinfraredirradiationtherapyacomparativestudyofopticnerveinjuryretinaldegenerationtraumaticbrainandspinalcordinjury |
_version_ |
1718414228299186176 |