Transverse Kähler holonomy in Sasaki Geometry and S-Stability

We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boyer Charles P., Huang Hongnian, Tønnesen-Friedman Christina W.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/6ea17538c719424b9149507b1b3dce17
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6ea17538c719424b9149507b1b3dce17
record_format dspace
spelling oai:doaj.org-article:6ea17538c719424b9149507b1b3dce172021-12-05T14:10:45ZTransverse Kähler holonomy in Sasaki Geometry and S-Stability2300-744310.1515/coma-2020-0123https://doaj.org/article/6ea17538c719424b9149507b1b3dce172021-11-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0123https://doaj.org/toc/2300-7443We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.Boyer Charles P.Huang HongnianTønnesen-Friedman Christina W.De Gruyterarticlealgebraicdeformationstransverse kählersasakiantransverse holonomy53c25MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 336-353 (2021)
institution DOAJ
collection DOAJ
language EN
topic algebraic
deformations
transverse kähler
sasakian
transverse holonomy
53c25
Mathematics
QA1-939
spellingShingle algebraic
deformations
transverse kähler
sasakian
transverse holonomy
53c25
Mathematics
QA1-939
Boyer Charles P.
Huang Hongnian
Tønnesen-Friedman Christina W.
Transverse Kähler holonomy in Sasaki Geometry and S-Stability
description We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.
format article
author Boyer Charles P.
Huang Hongnian
Tønnesen-Friedman Christina W.
author_facet Boyer Charles P.
Huang Hongnian
Tønnesen-Friedman Christina W.
author_sort Boyer Charles P.
title Transverse Kähler holonomy in Sasaki Geometry and S-Stability
title_short Transverse Kähler holonomy in Sasaki Geometry and S-Stability
title_full Transverse Kähler holonomy in Sasaki Geometry and S-Stability
title_fullStr Transverse Kähler holonomy in Sasaki Geometry and S-Stability
title_full_unstemmed Transverse Kähler holonomy in Sasaki Geometry and S-Stability
title_sort transverse kähler holonomy in sasaki geometry and s-stability
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/6ea17538c719424b9149507b1b3dce17
work_keys_str_mv AT boyercharlesp transversekahlerholonomyinsasakigeometryandsstability
AT huanghongnian transversekahlerholonomyinsasakigeometryandsstability
AT tønnesenfriedmanchristinaw transversekahlerholonomyinsasakigeometryandsstability
_version_ 1718371763906150400