Transverse Kähler holonomy in Sasaki Geometry and S-Stability
We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ea17538c719424b9149507b1b3dce17 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6ea17538c719424b9149507b1b3dce17 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6ea17538c719424b9149507b1b3dce172021-12-05T14:10:45ZTransverse Kähler holonomy in Sasaki Geometry and S-Stability2300-744310.1515/coma-2020-0123https://doaj.org/article/6ea17538c719424b9149507b1b3dce172021-11-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0123https://doaj.org/toc/2300-7443We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.Boyer Charles P.Huang HongnianTønnesen-Friedman Christina W.De Gruyterarticlealgebraicdeformationstransverse kählersasakiantransverse holonomy53c25MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 336-353 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
algebraic deformations transverse kähler sasakian transverse holonomy 53c25 Mathematics QA1-939 |
spellingShingle |
algebraic deformations transverse kähler sasakian transverse holonomy 53c25 Mathematics QA1-939 Boyer Charles P. Huang Hongnian Tønnesen-Friedman Christina W. Transverse Kähler holonomy in Sasaki Geometry and S-Stability |
description |
We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability. |
format |
article |
author |
Boyer Charles P. Huang Hongnian Tønnesen-Friedman Christina W. |
author_facet |
Boyer Charles P. Huang Hongnian Tønnesen-Friedman Christina W. |
author_sort |
Boyer Charles P. |
title |
Transverse Kähler holonomy in Sasaki Geometry and S-Stability |
title_short |
Transverse Kähler holonomy in Sasaki Geometry and S-Stability |
title_full |
Transverse Kähler holonomy in Sasaki Geometry and S-Stability |
title_fullStr |
Transverse Kähler holonomy in Sasaki Geometry and S-Stability |
title_full_unstemmed |
Transverse Kähler holonomy in Sasaki Geometry and S-Stability |
title_sort |
transverse kähler holonomy in sasaki geometry and s-stability |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/6ea17538c719424b9149507b1b3dce17 |
work_keys_str_mv |
AT boyercharlesp transversekahlerholonomyinsasakigeometryandsstability AT huanghongnian transversekahlerholonomyinsasakigeometryandsstability AT tønnesenfriedmanchristinaw transversekahlerholonomyinsasakigeometryandsstability |
_version_ |
1718371763906150400 |