Transverse Kähler holonomy in Sasaki Geometry and S-Stability
We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B...
Guardado en:
Autores principales: | Boyer Charles P., Huang Hongnian, Tønnesen-Friedman Christina W. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ea17538c719424b9149507b1b3dce17 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Locally conformally Kähler structures on four-dimensional solvable Lie algebras
por: Angella Daniele, et al.
Publicado: (2019) -
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
por: Calamai Simone, et al.
Publicado: (2017) -
On Kähler-like and G-Kähler-like almost Hermitian manifolds
por: Kawamura Masaya
Publicado: (2020) -
Locally conformally Kähler solvmanifolds: a survey
por: Andrada A., et al.
Publicado: (2019) -
Kähler-Einstein metrics: Old and New
por: Angella Daniele, et al.
Publicado: (2017)