Modeling cyclic plasticity of additively manufactured alloy Mar-M-509 using a high-performance spectral-based micromechanical model
A high-performance full-field spectral crystal plasticity model referred to as MPI-ACC-EVPCUFFT is adapted to study the deformation behavior of additively manufactured Mar-M-509® cobalt-based superalloy. The model features a dislocation density-based hardening law for the evolution of slip resistanc...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ea29d7fca0342898b49f29bb8539996 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A high-performance full-field spectral crystal plasticity model referred to as MPI-ACC-EVPCUFFT is adapted to study the deformation behavior of additively manufactured Mar-M-509® cobalt-based superalloy. The model features a dislocation density-based hardening law for the evolution of slip resistance, a barrier effect induced by grain morphology to influence the slip resistance, and a slip system-level back-stress law for adjusting the driving force to slip. The model is used to interpret and predict strength of the alloy in tension, compression, load reversal, and low-cycle fatigue as a function of initial microstructure. The initial microstructure varied from sample-to-sample to represent the effects of build orientation and heat treatment. Results show that the model successfully reproduces phenomena pertaining to monotonic and cyclic deformation including the non-linear unloading, Bauschinger effect, and cyclic hardening/softening using a single set of model parameters. Moreover, the model offers insights into fluctuations of mechanical fields and strain partitioning. |
---|