Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet
Abstract Counting cells in fluorescent microscopy is a tedious, time-consuming task that researchers have to accomplish to assess the effects of different experimental conditions on biological structures of interest. Although such objects are generally easy to identify, the process of manually annot...
Guardado en:
Autores principales: | Roberto Morelli, Luca Clissa, Roberto Amici, Matteo Cerri, Timna Hitrec, Marco Luppi, Lorenzo Rinaldi, Fabio Squarcio, Antonio Zoccoli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ead4c94f6484e7f9793ae43d1f5239f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021) -
CDUNet: Cloud Detection UNet for Remote Sensing Imagery
por: Kai Hu, et al.
Publicado: (2021) -
Waking and sleeping following water deprivation in the rat.
por: Davide Martelli, et al.
Publicado: (2012) -
Automated cell count in body fluids: a review
por: Alcaide Martín María José, et al.
Publicado: (2021) -
Connected-UNets: a deep learning architecture for breast mass segmentation
por: Asma Baccouche, et al.
Publicado: (2021)