Wind Speed Prediction Using Hybrid 1D CNN and BLSTM Network
As the world witnesses population increase, the global power demand is increasing and the need for exploring other alternative clean and self-renewable sources of energy such as wind has become necessary. For optimal operation of the wind farms and stability of the grid, wind prediction ahead of tim...
Guardado en:
Autores principales: | Abdulmajid Lawal, Shafiqur Rehman, Luai M. Alhems, Md. Mahbub Alam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6eb8a4e5698c49dfa79c1623bcb788f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short term prediction of wind speed based on long-short term memory networks
por: Salman Umar T., et al.
Publicado: (2021) -
Accuracy of wind speed predictability with heights using Recurrent Neural networks
por: Mohandes M., et al.
Publicado: (2021) -
Wind Speed Forecasting in Fishing Harbor Anchorage Using a Novel Deep Convolutional Neural Network
por: Caifen He, et al.
Publicado: (2021) -
Probability distributions for wind speed volatility characteristics: A case study of Northern Norway
por: Hao Chen, et al.
Publicado: (2021) -
Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis
por: Weichao Dong, et al.
Publicado: (2021)