An Optimization-Based Meta-Learning Model for MRI Reconstruction with Diverse Dataset
This work aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the meta-learning framework. Specifically, we develop a deep reconstruction network induced by a learnable optimization algorithm (LOA) to solve the nonconvex nonsmooth variational model of MRI ima...
Guardado en:
Autores principales: | Wanyu Bian, Yunmei Chen, Xiaojing Ye, Qingchao Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ecd95b04f2147f4b78df9f402a73dea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
por: Marica Pesce, et al.
Publicado: (2021) -
Image and Video Forensics
por: Irene Amerini, et al.
Publicado: (2021) -
Advanced Computational Methods for Oncological Image Analysis
por: Leonardo Rundo, et al.
Publicado: (2021) -
Conditional Invertible Neural Networks for Medical Imaging
por: Alexander Denker, et al.
Publicado: (2021) -
Ultrasound Imaging in Dentistry: A Literature Overview
por: Rodolfo Reda, et al.
Publicado: (2021)