An in-vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength

Abstract Layer specific functional MRI requires high spatial resolution data. To compensate the associated poor signal to noise ratio it is common to integrate the signal from voxels at a given cortical depth. If the region is sufficiently large then physiological noise will be the dominant noise so...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Irati Markuerkiaga, José P. Marques, Lauren J. Bains, David G. Norris
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6ed41235e1f741df983ac1497e81614d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Layer specific functional MRI requires high spatial resolution data. To compensate the associated poor signal to noise ratio it is common to integrate the signal from voxels at a given cortical depth. If the region is sufficiently large then physiological noise will be the dominant noise source. In this work, activation profiles in response to the same visual stimulus are compared at 1.5 T, 3 T and 7 T using a multi-echo, gradient echo (GE) FLASH sequence, with a 0.75 mm isotropic voxel size and the cortical integration approach. The results show that after integrating over a cortical volume of 40, 60 and 100 mm3 (at 7 T, 3 T, and 1.5 T, respectively), the signal is in the physiological noise dominated regime. The activation profiles obtained are similar for equivalent echo times. BOLD-like noise is found to be the dominant source of physiological noise. Consequently, the functional contrast to noise ratio is not strongly echo-time or field-strength dependent. We conclude that laminar GE-BOLD fMRI at lower field strengths is feasible but that larger patches of cortex will need to be examined, and that the acquisition efficiency is reduced.