Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network
Abstract Deep learning is an emerging tool, which is regularly used for disease diagnosis in the medical field. A new research direction has been developed for the detection of early-stage gastric cancer. The computer-aided diagnosis (CAD) systems reduce the mortality rate due to their effectiveness...
Guardado en:
Autores principales: | Muhammad Aqeel Aslam, Cuili Xue, Yunsheng Chen, Amin Zhang, Manhua Liu, Kan Wang, Daxiang Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6edaf71c76934a3491833917528d380d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
A hybrid network intrusion detection using darwinian particle swarm optimization and stacked autoencoder hoeffding tree
por: B. Ida Seraphim, et al.
Publicado: (2021) -
A stacking ensemble deep learning approach to cancer type classification based on TCGA data
por: Mohanad Mohammed, et al.
Publicado: (2021) -
Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
por: Sergio Saponara, et al.
Publicado: (2021)