An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis

Rawls and colleagues use an advanced statistical approach to identify causal neurobehavioral mechanisms underlying Alcohol Use Disorder. Their findings support current multifactorial models of addiction, but also highlight the importance of social factors in addiction maintenance.

Guardado en:
Detalles Bibliográficos
Autores principales: Eric Rawls, Erich Kummerfeld, Anna Zilverstand
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/6f07ae07a7674b24a0447204712add14
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6f07ae07a7674b24a0447204712add14
record_format dspace
spelling oai:doaj.org-article:6f07ae07a7674b24a0447204712add142021-12-02T18:17:53ZAn integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis10.1038/s42003-021-01955-z2399-3642https://doaj.org/article/6f07ae07a7674b24a0447204712add142021-03-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01955-zhttps://doaj.org/toc/2399-3642Rawls and colleagues use an advanced statistical approach to identify causal neurobehavioral mechanisms underlying Alcohol Use Disorder. Their findings support current multifactorial models of addiction, but also highlight the importance of social factors in addiction maintenance.Eric RawlsErich KummerfeldAnna ZilverstandNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Eric Rawls
Erich Kummerfeld
Anna Zilverstand
An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
description Rawls and colleagues use an advanced statistical approach to identify causal neurobehavioral mechanisms underlying Alcohol Use Disorder. Their findings support current multifactorial models of addiction, but also highlight the importance of social factors in addiction maintenance.
format article
author Eric Rawls
Erich Kummerfeld
Anna Zilverstand
author_facet Eric Rawls
Erich Kummerfeld
Anna Zilverstand
author_sort Eric Rawls
title An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
title_short An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
title_full An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
title_fullStr An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
title_full_unstemmed An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
title_sort integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6f07ae07a7674b24a0447204712add14
work_keys_str_mv AT ericrawls anintegratedmultimodalmodelofalcoholusedisordergeneratedbydatadrivencausaldiscoveryanalysis
AT erichkummerfeld anintegratedmultimodalmodelofalcoholusedisordergeneratedbydatadrivencausaldiscoveryanalysis
AT annazilverstand anintegratedmultimodalmodelofalcoholusedisordergeneratedbydatadrivencausaldiscoveryanalysis
AT ericrawls integratedmultimodalmodelofalcoholusedisordergeneratedbydatadrivencausaldiscoveryanalysis
AT erichkummerfeld integratedmultimodalmodelofalcoholusedisordergeneratedbydatadrivencausaldiscoveryanalysis
AT annazilverstand integratedmultimodalmodelofalcoholusedisordergeneratedbydatadrivencausaldiscoveryanalysis
_version_ 1718378281818914816