An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
Rawls and colleagues use an advanced statistical approach to identify causal neurobehavioral mechanisms underlying Alcohol Use Disorder. Their findings support current multifactorial models of addiction, but also highlight the importance of social factors in addiction maintenance.
Guardado en:
Autores principales: | Eric Rawls, Erich Kummerfeld, Anna Zilverstand |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f07ae07a7674b24a0447204712add14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
por: Sofia Triantafillou, et al.
Publicado: (2017) -
Data driven discovery of cyber physical systems
por: Ye Yuan, et al.
Publicado: (2019) -
LANGUAGE-DRIVEN SPATIOTEMPORAL CAUSAL INTEGRATION IN THE PREFRONTAL AND PREMOTOR CORTICES
por: LIMONGI TIRADO¹,ROBERTO, et al.
Publicado: (2011) -
Computation and data driven discovery of topological phononic materials
por: Jiangxu Li, et al.
Publicado: (2021) -
Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications
por: Yangyang Wan, et al.
Publicado: (2021)