Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
The classification of electroencephalogram (EEG) signals is of significant importance in brain-computer interface (BCI) systems. Aiming to achieve intelligent classification of motor imagery EEG types with high accuracy, a classification methodology using the wavelet packet decomposition (WPD) and t...
Guardado en:
Autores principales: | Jing-Shan Huang, Wan-Shan Liu, Bin Yao, Zhan-Xiang Wang, Si-Fang Chen, Wei-Fang Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f2fa92d5cf5463a8bbcb2c652b17950 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
por: Amira Echtioui, et al.
Publicado: (2021) -
Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts
por: Hirotaka Sugino, et al.
Publicado: (2021) -
Analysis of Relationship between Electroencephalograms and Subjective Measurements for In-Vehicle Information System: A Preliminary Study
por: Nahyeong Kim, et al.
Publicado: (2021) -
Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
por: Fabio Lopes, et al.
Publicado: (2021) -
Electroencephalogram-Based Complexity Measures as Predictors of Post-operative Neurocognitive Dysfunction
por: Leah Acker, et al.
Publicado: (2021)