Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles

Tabassom Sedaghat Anbouhi,1,* Elnaz Mokhtari Esfidvajani,2,* Fahimeh Nemati,1 Setareh Haghighat,3 Soyar Sari,2 Farnoosh Attar,4 Arezoo Pakaghideh,5 Mohammad Javad Sohrabi,6 Seyyedeh Elaheh Mousavi,6 Mojtaba Falahati7 1Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran M...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sedaghat Anbouhi T, Mokhtari Esfidvajani E, Nemati F, Haghighat S, Sari S, Attar F, Pakaghideh A, Sohrabi MJ, Mousavi SE, Falahati M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/6f307ed8e13e4a009e5611c975cff37c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6f307ed8e13e4a009e5611c975cff37c
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Zero valent iron
Nanoparticle
Spectroscopy
Docking
Anticancer
Antibacterial activity
Medicine (General)
R5-920
spellingShingle Zero valent iron
Nanoparticle
Spectroscopy
Docking
Anticancer
Antibacterial activity
Medicine (General)
R5-920
Sedaghat Anbouhi T
Mokhtari Esfidvajani E
Nemati F
Haghighat S
Sari S
Attar F
Pakaghideh A
Sohrabi MJ
Mousavi SE
Falahati M
Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
description Tabassom Sedaghat Anbouhi,1,* Elnaz Mokhtari Esfidvajani,2,* Fahimeh Nemati,1 Setareh Haghighat,3 Soyar Sari,2 Farnoosh Attar,4 Arezoo Pakaghideh,5 Mohammad Javad Sohrabi,6 Seyyedeh Elaheh Mousavi,6 Mojtaba Falahati7 1Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 2Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 3Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 4Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran; 5Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran; 6Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; 7Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran *These authors contributed equally to this work Background: Nanoparticles (NPs) have been emerging as potential players in modern medicine with clinical applications ranging from therapeutic purposes to antimicrobial agents. However, before applications in medical agents, some in vitro studies should be done to explore their biological responses.Aim: In this study, protein binding, anticancer and antibacterial activates of zero valent iron (ZVFe) were explored. Materials and methods: ZVFe nanoparticles were synthesized and fully characterized by X-ray diffraction, field-emission scanning electron microscope, and dynamic light scattering analyses. Afterward, the interaction of ZVFe NPs with human serum albumin (HSA) was examined using a range of techniques including intrinsic fluorescence, circular dichroism, and UV–visible spectroscopic methods. Molecular docking study was run to determine the kind of interaction between ZVFe NPs and HSA. The anticancer influence of ZVFe NPs on SH-SY5Y was examined by MTT and flow cytometry analysis, whereas human white blood cells were used as the control cell. Also, the antibacterial effect of ZVFe NPs was examined on Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), and Staphylococcus aureus (ATCC 25923). Results: X-ray diffraction, transmission electron microscope, and dynamic light scattering analyses verified the synthesis of ZVFe NPs in a nano-sized diameter. Fluorescence spectroscopy analysis showed that ZVFe NPs spontaneously formed a complex with HSA through hydrogen bonds and van der Waals interactions. Also, circular dichroism spectroscopy study revealed that ZVFe NPs did not change the secondary structure of HSA. Moreover, UV–visible data presented that melting temperature (Tm) of HSA in the absence and presence of ZVFe NPs was almost identical. Molecular dynamic study also showed that ZVFe NP came into contact with polar residues on the surface of HSA molecule. Cellular assays showed that ZVFe NPs can induce cell mortality in a dose-dependent manner against SH-SY5Y cells, whereas these NPs did not trigger significant cell mortality against normal white bloods in the concentration range studied (1–100 µg/mL). Antibacterial assays showed a noteworthy inhibition on both bacterial strains. Conclusion: In conclusion, it was revealed that ZVFe NPs did not induce a substantial influence on the structure of protein and cytotoxicity against normal cell, whereas they derived significant anticancer and antibacterial effects. Keywords: zero valent iron, nanoparticle, spectroscopy, docking, anticancer, antibacterial activity
format article
author Sedaghat Anbouhi T
Mokhtari Esfidvajani E
Nemati F
Haghighat S
Sari S
Attar F
Pakaghideh A
Sohrabi MJ
Mousavi SE
Falahati M
author_facet Sedaghat Anbouhi T
Mokhtari Esfidvajani E
Nemati F
Haghighat S
Sari S
Attar F
Pakaghideh A
Sohrabi MJ
Mousavi SE
Falahati M
author_sort Sedaghat Anbouhi T
title Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
title_short Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
title_full Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
title_fullStr Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
title_full_unstemmed Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
title_sort albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/6f307ed8e13e4a009e5611c975cff37c
work_keys_str_mv AT sedaghatanbouhit albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT mokhtariesfidvajanie albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT nematif albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT haghighats albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT saris albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT attarf albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT pakaghideha albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT sohrabimj albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT mousavise albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
AT falahatim albuminbindinganticancerandantibacterialpropertiesofsynthesizedzerovalentironnanoparticles
_version_ 1718401733428772864
spelling oai:doaj.org-article:6f307ed8e13e4a009e5611c975cff37c2021-12-02T03:29:29ZAlbumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles1178-2013https://doaj.org/article/6f307ed8e13e4a009e5611c975cff37c2018-12-01T00:00:00Zhttps://www.dovepress.com/albumin-binding-anticancer-and-antibacterial-properties-of-synthesized-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Tabassom Sedaghat Anbouhi,1,* Elnaz Mokhtari Esfidvajani,2,* Fahimeh Nemati,1 Setareh Haghighat,3 Soyar Sari,2 Farnoosh Attar,4 Arezoo Pakaghideh,5 Mohammad Javad Sohrabi,6 Seyyedeh Elaheh Mousavi,6 Mojtaba Falahati7 1Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 2Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 3Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; 4Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran; 5Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran; 6Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; 7Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran *These authors contributed equally to this work Background: Nanoparticles (NPs) have been emerging as potential players in modern medicine with clinical applications ranging from therapeutic purposes to antimicrobial agents. However, before applications in medical agents, some in vitro studies should be done to explore their biological responses.Aim: In this study, protein binding, anticancer and antibacterial activates of zero valent iron (ZVFe) were explored. Materials and methods: ZVFe nanoparticles were synthesized and fully characterized by X-ray diffraction, field-emission scanning electron microscope, and dynamic light scattering analyses. Afterward, the interaction of ZVFe NPs with human serum albumin (HSA) was examined using a range of techniques including intrinsic fluorescence, circular dichroism, and UV–visible spectroscopic methods. Molecular docking study was run to determine the kind of interaction between ZVFe NPs and HSA. The anticancer influence of ZVFe NPs on SH-SY5Y was examined by MTT and flow cytometry analysis, whereas human white blood cells were used as the control cell. Also, the antibacterial effect of ZVFe NPs was examined on Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), and Staphylococcus aureus (ATCC 25923). Results: X-ray diffraction, transmission electron microscope, and dynamic light scattering analyses verified the synthesis of ZVFe NPs in a nano-sized diameter. Fluorescence spectroscopy analysis showed that ZVFe NPs spontaneously formed a complex with HSA through hydrogen bonds and van der Waals interactions. Also, circular dichroism spectroscopy study revealed that ZVFe NPs did not change the secondary structure of HSA. Moreover, UV–visible data presented that melting temperature (Tm) of HSA in the absence and presence of ZVFe NPs was almost identical. Molecular dynamic study also showed that ZVFe NP came into contact with polar residues on the surface of HSA molecule. Cellular assays showed that ZVFe NPs can induce cell mortality in a dose-dependent manner against SH-SY5Y cells, whereas these NPs did not trigger significant cell mortality against normal white bloods in the concentration range studied (1–100 µg/mL). Antibacterial assays showed a noteworthy inhibition on both bacterial strains. Conclusion: In conclusion, it was revealed that ZVFe NPs did not induce a substantial influence on the structure of protein and cytotoxicity against normal cell, whereas they derived significant anticancer and antibacterial effects. Keywords: zero valent iron, nanoparticle, spectroscopy, docking, anticancer, antibacterial activitySedaghat Anbouhi TMokhtari Esfidvajani ENemati FHaghighat SSari SAttar FPakaghideh ASohrabi MJMousavi SEFalahati MDove Medical PressarticleZero valent ironNanoparticleSpectroscopyDockingAnticancerAntibacterial activityMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 243-256 (2018)