Heterogeneity and effectiveness analysis of COVID-19 prevention and control in major cities in China through time-varying reproduction number estimation

Abstract Beginning on December 31, 2019, the large-scale novel coronavirus disease 2019 (COVID-19) emerged in China. Tracking and analysing the heterogeneity and effectiveness of cities’ prevention and control of the COVID-19 epidemic is essential to design and adjust epidemic prevention and control...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qing Cheng, Zeyi Liu, Guangquan Cheng, Jincai Huang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6f350c365c3a449384965c52d89cab43
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Beginning on December 31, 2019, the large-scale novel coronavirus disease 2019 (COVID-19) emerged in China. Tracking and analysing the heterogeneity and effectiveness of cities’ prevention and control of the COVID-19 epidemic is essential to design and adjust epidemic prevention and control measures. The number of newly confirmed cases in 25 of China’s most-affected cities for the COVID-19 epidemic from January 11 to February 10 was collected. The heterogeneity and effectiveness of these 25 cities’ prevention and control measures for COVID-19 were analysed by using an estimated time-varying reproduction number method and a serial correlation method. The results showed that the effective reproduction number (R) in 25 cities showed a downward trend overall, but there was a significant difference in the R change trends among cities, indicating that there was heterogeneity in the spread and control of COVID-19 in cities. Moreover, the COVID-19 control in 21 of 25 cities was effective, and the risk of infection decreased because their R had dropped below 1 by February 10, 2020. In contrast, the cities of Wuhan, Tianmen, Ezhou and Enshi still had difficulty effectively controlling the COVID-19 epidemic in a short period of time because their R was greater than 1.