Electricity Theft Detection in Power Consumption Data Based on Adaptive Tuning Recurrent Neural Network
Electricity theft behavior has serious influence on the normal operation of power grid and the economic benefits of power enterprises. Intelligent anti-power-theft algorithm is required for monitoring the power consumption data to recognize electricity power theft. In this paper, an adaptive time-se...
Enregistré dans:
Auteurs principaux: | Guoying Lin, Haoyang Feng, Xiaofeng Feng, Hongwu Wen, Yuanzheng Li, Shaoyong Hong, Zhixian Ni |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6f40460e4bc044d491031deef40044ba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Theft Prevention With Rahat as an Effort to Protect Property in Pasaman, West Sumatera, Indonesia
par: Salma Salma, et autres
Publié: (2020) -
A hybrid approach based on deep learning and support vector machine for the detection of electricity theft in power grids
par: Ejaz Ul Haq, et autres
Publié: (2021) -
Design and Prospect for Anti-theft and Anti-destruction of Nodes in Solar Insecticidal Lamps Internet of Things
par: HUANG Kai, et autres
Publié: (2021) -
Fight of Law Enforcement Agencies against Theft of Socialist Property in Cooperative Organizations and State Trade in the Late 1940-ies (based on materials of Sverdlovsk region)
par: V. N. Mamyachenkov
Publié: (2017) -
New Trends in Sound Synthesis and Automatic Tuning of Electronic Musical Instruments
par: Aguilar,Juan R., et autres
Publié: (2003)