A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
In many applications, such as robotic perception, scene understanding, augmented reality, 3D reconstruction, and medical image analysis, depth from images is a fundamentally ill-posed problem. The success of depth estimation models relies on assembling a suitably large and diverse training dataset a...
Guardado en:
Autores principales: | Faisal Khan, Shahid Hussain, Shubhajit Basak, Mohamed Moustafa, Peter Corcoran |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f4053d3f9fa4bbeb34d9231724ee45f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Monocular Human Depth Estimation Via Pose Estimation
por: Jinyoung Jun, et al.
Publicado: (2021) -
Self-Supervised Monocular Depth Estimation With Extensive Pretraining
por: Hyukdoo Choi
Publicado: (2021) -
Experimental investigation of gabion inclined drops as a sustainable solution for hydraulic energy loss
por: Rasoul Daneshfaraz, et al.
Publicado: (2021) -
Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
por: Huihui Xu, et al.
Publicado: (2021) -
Breathing In-Depth: A Parametrization Study on RGB-D Respiration Extraction Methods
por: Jochen Kempfle, et al.
Publicado: (2021)