A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
In many applications, such as robotic perception, scene understanding, augmented reality, 3D reconstruction, and medical image analysis, depth from images is a fundamentally ill-posed problem. The success of depth estimation models relies on assembling a suitably large and diverse training dataset a...
Enregistré dans:
Auteurs principaux: | Faisal Khan, Shahid Hussain, Shubhajit Basak, Mohamed Moustafa, Peter Corcoran |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6f4053d3f9fa4bbeb34d9231724ee45f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Monocular Human Depth Estimation Via Pose Estimation
par: Jinyoung Jun, et autres
Publié: (2021) -
Self-Supervised Monocular Depth Estimation With Extensive Pretraining
par: Hyukdoo Choi
Publié: (2021) -
Experimental investigation of gabion inclined drops as a sustainable solution for hydraulic energy loss
par: Rasoul Daneshfaraz, et autres
Publié: (2021) -
Detail-preserving depth estimation from a single image based on modified fully convolutional residual network and gradient network
par: Huihui Xu, et autres
Publié: (2021) -
Breathing In-Depth: A Parametrization Study on RGB-D Respiration Extraction Methods
par: Jochen Kempfle, et autres
Publié: (2021)