Faedo-Galerkin approximation of mild solutions of fractional functional differential equations

In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sousa J. Vanterler da C., Fečkan Michal, de Oliveira E. Capelas
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6f435d8bf42d4b8182577321016d6eb3
record_format dspace
spelling oai:doaj.org-article:6f435d8bf42d4b8182577321016d6eb32021-12-05T14:10:56ZFaedo-Galerkin approximation of mild solutions of fractional functional differential equations2353-062610.1515/msds-2020-0122https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb32021-01-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0122https://doaj.org/toc/2353-0626In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some convergence results.Sousa J. Vanterler da C.Fečkan Michalde Oliveira E. CapelasDe Gruyterarticlefractional differential equationsexistence and uniquenessmild solutionfaedo-galerkin approximationgronwall inequality26a3334k3034g2047h06MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic fractional differential equations
existence and uniqueness
mild solution
faedo-galerkin approximation
gronwall inequality
26a33
34k30
34g20
47h06
Mathematics
QA1-939
spellingShingle fractional differential equations
existence and uniqueness
mild solution
faedo-galerkin approximation
gronwall inequality
26a33
34k30
34g20
47h06
Mathematics
QA1-939
Sousa J. Vanterler da C.
Fečkan Michal
de Oliveira E. Capelas
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
description In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some convergence results.
format article
author Sousa J. Vanterler da C.
Fečkan Michal
de Oliveira E. Capelas
author_facet Sousa J. Vanterler da C.
Fečkan Michal
de Oliveira E. Capelas
author_sort Sousa J. Vanterler da C.
title Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
title_short Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
title_full Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
title_fullStr Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
title_full_unstemmed Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
title_sort faedo-galerkin approximation of mild solutions of fractional functional differential equations
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb3
work_keys_str_mv AT sousajvanterlerdac faedogalerkinapproximationofmildsolutionsoffractionalfunctionaldifferentialequations
AT feckanmichal faedogalerkinapproximationofmildsolutionsoffractionalfunctionaldifferentialequations
AT deoliveiraecapelas faedogalerkinapproximationofmildsolutionsoffractionalfunctionaldifferentialequations
_version_ 1718371543547904000