Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some c...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6f435d8bf42d4b8182577321016d6eb3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6f435d8bf42d4b8182577321016d6eb32021-12-05T14:10:56ZFaedo-Galerkin approximation of mild solutions of fractional functional differential equations2353-062610.1515/msds-2020-0122https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb32021-01-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0122https://doaj.org/toc/2353-0626In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some convergence results.Sousa J. Vanterler da C.Fečkan Michalde Oliveira E. CapelasDe Gruyterarticlefractional differential equationsexistence and uniquenessmild solutionfaedo-galerkin approximationgronwall inequality26a3334k3034g2047h06MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 1-17 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fractional differential equations existence and uniqueness mild solution faedo-galerkin approximation gronwall inequality 26a33 34k30 34g20 47h06 Mathematics QA1-939 |
spellingShingle |
fractional differential equations existence and uniqueness mild solution faedo-galerkin approximation gronwall inequality 26a33 34k30 34g20 47h06 Mathematics QA1-939 Sousa J. Vanterler da C. Fečkan Michal de Oliveira E. Capelas Faedo-Galerkin approximation of mild solutions of fractional functional differential equations |
description |
In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some convergence results. |
format |
article |
author |
Sousa J. Vanterler da C. Fečkan Michal de Oliveira E. Capelas |
author_facet |
Sousa J. Vanterler da C. Fečkan Michal de Oliveira E. Capelas |
author_sort |
Sousa J. Vanterler da C. |
title |
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations |
title_short |
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations |
title_full |
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations |
title_fullStr |
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations |
title_full_unstemmed |
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations |
title_sort |
faedo-galerkin approximation of mild solutions of fractional functional differential equations |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb3 |
work_keys_str_mv |
AT sousajvanterlerdac faedogalerkinapproximationofmildsolutionsoffractionalfunctionaldifferentialequations AT feckanmichal faedogalerkinapproximationofmildsolutionsoffractionalfunctionaldifferentialequations AT deoliveiraecapelas faedogalerkinapproximationofmildsolutionsoffractionalfunctionaldifferentialequations |
_version_ |
1718371543547904000 |