Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
In the paper, we discuss the existence and uniqueness of mild solutions of a class of fractional functional differential equations in Hilbert space separable using the Banach fixed point theorem technique. In this sense, Faedo-Galerkin approximation to the solution is studied and demonstrated some c...
Guardado en:
Autores principales: | Sousa J. Vanterler da C., Fečkan Michal, de Oliveira E. Capelas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f435d8bf42d4b8182577321016d6eb3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Delay-Dependent Stability Conditions for Non-autonomous Functional Differential Equations with Several Delays in a Banach Space
por: Gil’ Michael
Publicado: (2021) -
Solvability of the abstract evolution equations in Ls-spaces with critical temporal weights
por: Zhang Qinghua, et al.
Publicado: (2021) -
Numerical computations and theoretical investigations of a dynamical system with fractional order derivative
por: Muhammad Arfan, et al.
Publicado: (2022) -
A note on the approximate controllability of second-order integro-differential evolution control systems via resolvent operators
por: Velusamy Vijayakumar, et al.
Publicado: (2021) -
Third-order differential equations with three-point boundary conditions
por: Cabada Alberto, et al.
Publicado: (2021)