RBPSpot: Learning on appropriate contextual information for RBP binding sites discovery
Summary: Identifying the factors determining the RBP-RNA interactions remains a big challenge. It involves sparse binding motifs and a suitable sequence context for binding. The present work describes an approach to detect RBP binding sites in RNAs using an ultra-fast inexact k-mers search for stati...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f67ca246bed473b92c2e7b266e6a876 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Summary: Identifying the factors determining the RBP-RNA interactions remains a big challenge. It involves sparse binding motifs and a suitable sequence context for binding. The present work describes an approach to detect RBP binding sites in RNAs using an ultra-fast inexact k-mers search for statistically significant seeds. The seeds work as an anchor to evaluate the context and binding potential using flanking region information while leveraging from Deep Feed-forward Neural Network. The developed models also received support from MD-simulation studies. The implemented software, RBPSpot, scored consistently high for all the performance metrics including average accuracy of ∼90% across a large number of validated datasets. It outperformed the compared tools, including some with much complex deep-learning models, during a comprehensive benchmarking process. RBPSpot can identify RBP binding sites in the human system and can also be used to develop new models, making it a valuable resource in the area of regulatory system studies. |
---|