Predictive modeling of clinical trial terminations using feature engineering and embedding learning
Abstract In this study, we propose to use machine learning to understand terminated clinical trials. Our goal is to answer two fundamental questions: (1) what are common factors/markers associated to terminated clinical trials? and (2) how to accurately predict whether a clinical trial may be termin...
Guardado en:
Autores principales: | Magdalyn E. Elkin, Xingquan Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f7430ca29734e37a28ff3887950ba2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning classifies predictive kinematic features in a mouse model of neurodegeneration
por: Ruyi Huang, et al.
Publicado: (2021) -
Embedding Bachelor of Engineering University Education with Enhanced Work-Integrated Learning
por: Pradeep Vailasseri, et al.
Publicado: (2021) -
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
por: Luke Oakden-Rayner, et al.
Publicado: (2017) -
Machine learning and feature engineering for predicting pulse presence during chest compressions
por: Diya Sashidhar, et al.
Publicado: (2021) -
Adaptive Similarity Function with Structural Features of Network Embedding for Missing Link Prediction
por: Chuanting Zhang, et al.
Publicado: (2021)