Explaining deep neural networks for knowledge discovery in electrocardiogram analysis

Abstract Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Steven A. Hicks, Jonas L. Isaksen, Vajira Thambawita, Jonas Ghouse, Gustav Ahlberg, Allan Linneberg, Niels Grarup, Inga Strümke, Christina Ellervik, Morten Salling Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, Pål Halvorsen, Mary M. Maleckar, Michael A. Riegler, Jørgen K. Kanters
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6f83e0ec46bc41759fd87f303ddffe2e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6f83e0ec46bc41759fd87f303ddffe2e
record_format dspace
spelling oai:doaj.org-article:6f83e0ec46bc41759fd87f303ddffe2e2021-12-02T16:53:20ZExplaining deep neural networks for knowledge discovery in electrocardiogram analysis10.1038/s41598-021-90285-52045-2322https://doaj.org/article/6f83e0ec46bc41759fd87f303ddffe2e2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90285-5https://doaj.org/toc/2045-2322Abstract Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features.Steven A. HicksJonas L. IsaksenVajira ThambawitaJonas GhouseGustav AhlbergAllan LinnebergNiels GrarupInga StrümkeChristina EllervikMorten Salling OlesenTorben HansenClaus GraffNiels-Henrik Holstein-RathlouPål HalvorsenMary M. MaleckarMichael A. RieglerJørgen K. KantersNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Steven A. Hicks
Jonas L. Isaksen
Vajira Thambawita
Jonas Ghouse
Gustav Ahlberg
Allan Linneberg
Niels Grarup
Inga Strümke
Christina Ellervik
Morten Salling Olesen
Torben Hansen
Claus Graff
Niels-Henrik Holstein-Rathlou
Pål Halvorsen
Mary M. Maleckar
Michael A. Riegler
Jørgen K. Kanters
Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
description Abstract Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features.
format article
author Steven A. Hicks
Jonas L. Isaksen
Vajira Thambawita
Jonas Ghouse
Gustav Ahlberg
Allan Linneberg
Niels Grarup
Inga Strümke
Christina Ellervik
Morten Salling Olesen
Torben Hansen
Claus Graff
Niels-Henrik Holstein-Rathlou
Pål Halvorsen
Mary M. Maleckar
Michael A. Riegler
Jørgen K. Kanters
author_facet Steven A. Hicks
Jonas L. Isaksen
Vajira Thambawita
Jonas Ghouse
Gustav Ahlberg
Allan Linneberg
Niels Grarup
Inga Strümke
Christina Ellervik
Morten Salling Olesen
Torben Hansen
Claus Graff
Niels-Henrik Holstein-Rathlou
Pål Halvorsen
Mary M. Maleckar
Michael A. Riegler
Jørgen K. Kanters
author_sort Steven A. Hicks
title Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
title_short Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
title_full Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
title_fullStr Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
title_full_unstemmed Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
title_sort explaining deep neural networks for knowledge discovery in electrocardiogram analysis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6f83e0ec46bc41759fd87f303ddffe2e
work_keys_str_mv AT stevenahicks explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT jonaslisaksen explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT vajirathambawita explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT jonasghouse explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT gustavahlberg explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT allanlinneberg explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT nielsgrarup explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT ingastrumke explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT christinaellervik explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT mortensallingolesen explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT torbenhansen explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT clausgraff explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT nielshenrikholsteinrathlou explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT palhalvorsen explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT marymmaleckar explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT michaelariegler explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
AT jørgenkkanters explainingdeepneuralnetworksforknowledgediscoveryinelectrocardiogramanalysis
_version_ 1718382865745444864