Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
Abstract Deep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation...
Guardado en:
Autores principales: | Steven A. Hicks, Jonas L. Isaksen, Vajira Thambawita, Jonas Ghouse, Gustav Ahlberg, Allan Linneberg, Niels Grarup, Inga Strümke, Christina Ellervik, Morten Salling Olesen, Torben Hansen, Claus Graff, Niels-Henrik Holstein-Rathlou, Pål Halvorsen, Mary M. Maleckar, Michael A. Riegler, Jørgen K. Kanters |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f83e0ec46bc41759fd87f303ddffe2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
por: Vajira Thambawita, et al.
Publicado: (2021) -
Expert consensus document on automated diagnosis of the electrocardiogram: The task force on automated diagnosis of the electrocardiogram in Japan
por: Takao Katoh, et al.
Publicado: (2021) -
Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring
por: Francisco J. Romero, et al.
Publicado: (2019) -
Filtering electrocardiogram: Music, math, and ST-elevation myocardial infarction
por: Emre K. Aslanger, et al.
Publicado: (2021) -
Identification of myocardial infarction using morphological features of electrocardiogram and vectorcardiogram
por: Nastaran Jafari Hafshejani, et al.
Publicado: (2021)