CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods
Abstract Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an important issue in the drug development process. In this study, three novel ensemble classification models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict carcinogen...
Guardado en:
Autores principales: | Li Zhang, Haixin Ai, Wen Chen, Zimo Yin, Huan Hu, Junfeng Zhu, Jian Zhao, Qi Zhao, Hongsheng Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f9317f3cd354de29a7d7ea285141a8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
- Carcinos
-
GenomeFingerprinter: the genome fingerprint and the universal genome fingerprint analysis for systematic comparative genomics.
por: Yuncan Ai, et al.
Publicado: (2013) -
Thirdhand smoke: Genotoxicity and carcinogenic potential
por: Bo Hang, et al.
Publicado: (2020) -
Presoja varovalnega učinka gozda pred snežnimi plazovi
por: Simon Pintar, et al.
Publicado: (2016) -
Inferring the molecular and phenotypic impact of amino acid variants with MutPred2
por: Vikas Pejaver, et al.
Publicado: (2020)