A stochastic quantum program synthesis framework based on Bayesian optimization
Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian opt...
Guardado en:
Autores principales: | Yao Xiao, Shahin Nazarian, Paul Bogdan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6f99556589954be2bb371e2bcdfb4e5a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study
por: Zikun Yang, et al.
Publicado: (2021) -
Detecting drought regulators using stochastic inference in Bayesian networks.
por: Aditya Lahiri, et al.
Publicado: (2021) -
Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference
por: Yong Shim, et al.
Publicado: (2017) -
Deciphering the laws of social network-transcendent COVID-19 misinformation dynamics and implications for combating misinformation phenomena
por: Mingxi Cheng, et al.
Publicado: (2021) -
From rumor to genetic mutation detection with explanations: a GAN approach
por: Mingxi Cheng, et al.
Publicado: (2021)