A stochastic quantum program synthesis framework based on Bayesian optimization
Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian opt...
Enregistré dans:
Auteurs principaux: | Yao Xiao, Shahin Nazarian, Paul Bogdan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6f99556589954be2bb371e2bcdfb4e5a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study
par: Zikun Yang, et autres
Publié: (2021) -
Detecting drought regulators using stochastic inference in Bayesian networks.
par: Aditya Lahiri, et autres
Publié: (2021) -
Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference
par: Yong Shim, et autres
Publié: (2017) -
Deciphering the laws of social network-transcendent COVID-19 misinformation dynamics and implications for combating misinformation phenomena
par: Mingxi Cheng, et autres
Publié: (2021) -
From rumor to genetic mutation detection with explanations: a GAN approach
par: Mingxi Cheng, et autres
Publié: (2021)