Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning
Abstract Craniofacial anomaly including deformational plagiocephaly as a result of deformities in head and facial bones evolution is a serious health problem in newbies. The impact of such condition on the affected infants is profound from both medical and social viewpoint. Indeed, timely diagnosing...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6faa086a9f9b43649c7558303afbfeac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6faa086a9f9b43649c7558303afbfeac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6faa086a9f9b43649c7558303afbfeac2021-12-02T19:12:27ZAutomatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning10.1038/s41598-021-96821-72045-2322https://doaj.org/article/6faa086a9f9b43649c7558303afbfeac2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96821-7https://doaj.org/toc/2045-2322Abstract Craniofacial anomaly including deformational plagiocephaly as a result of deformities in head and facial bones evolution is a serious health problem in newbies. The impact of such condition on the affected infants is profound from both medical and social viewpoint. Indeed, timely diagnosing through different medical examinations like anthropometric measurements of the skull or even Computer Tomography (CT) image modality followed by a periodical screening and monitoring plays a vital role in treatment phase. In this paper, a classification model for detecting and monitoring deformational plagiocephaly in affected infants is presented. The presented model is based on a deep learning network architecture. The given model achieves high accuracy of 99.01% with other classification parameters. The input to the model are the images captured by commonly used smartphone cameras which waives the requirement to sophisticated medical imaging modalities. The method is deployed into a mobile application which enables the parents/caregivers and non-clinical experts to monitor and report the treatment progress at home.Seyed Amir Hossein TabatabaeiPatrick FischerSonja WattendorfFatemeh SabouripourHans-Peter HowaldtMartina WilbrandJan-Falco WilbrandKeywan SohrabiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Seyed Amir Hossein Tabatabaei Patrick Fischer Sonja Wattendorf Fatemeh Sabouripour Hans-Peter Howaldt Martina Wilbrand Jan-Falco Wilbrand Keywan Sohrabi Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
description |
Abstract Craniofacial anomaly including deformational plagiocephaly as a result of deformities in head and facial bones evolution is a serious health problem in newbies. The impact of such condition on the affected infants is profound from both medical and social viewpoint. Indeed, timely diagnosing through different medical examinations like anthropometric measurements of the skull or even Computer Tomography (CT) image modality followed by a periodical screening and monitoring plays a vital role in treatment phase. In this paper, a classification model for detecting and monitoring deformational plagiocephaly in affected infants is presented. The presented model is based on a deep learning network architecture. The given model achieves high accuracy of 99.01% with other classification parameters. The input to the model are the images captured by commonly used smartphone cameras which waives the requirement to sophisticated medical imaging modalities. The method is deployed into a mobile application which enables the parents/caregivers and non-clinical experts to monitor and report the treatment progress at home. |
format |
article |
author |
Seyed Amir Hossein Tabatabaei Patrick Fischer Sonja Wattendorf Fatemeh Sabouripour Hans-Peter Howaldt Martina Wilbrand Jan-Falco Wilbrand Keywan Sohrabi |
author_facet |
Seyed Amir Hossein Tabatabaei Patrick Fischer Sonja Wattendorf Fatemeh Sabouripour Hans-Peter Howaldt Martina Wilbrand Jan-Falco Wilbrand Keywan Sohrabi |
author_sort |
Seyed Amir Hossein Tabatabaei |
title |
Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
title_short |
Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
title_full |
Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
title_fullStr |
Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
title_full_unstemmed |
Automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
title_sort |
automatic detection and monitoring of abnormal skull shape in children with deformational plagiocephaly using deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6faa086a9f9b43649c7558303afbfeac |
work_keys_str_mv |
AT seyedamirhosseintabatabaei automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT patrickfischer automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT sonjawattendorf automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT fatemehsabouripour automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT hanspeterhowaldt automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT martinawilbrand automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT janfalcowilbrand automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning AT keywansohrabi automaticdetectionandmonitoringofabnormalskullshapeinchildrenwithdeformationalplagiocephalyusingdeeplearning |
_version_ |
1718377051281424384 |