The Largest Component of Near-Critical Random Intersection Graph with Tunable Clustering
In this paper, we study the largest component of the near-critical random intersection graph Gn,m,p with n nodes and m elements, where m=Θn which leads to the fact that the clustering is tunable. We prove that with high probability the size of the largest component in the weakly supercritical random...
Guardado en:
Autores principales: | Shiying Huang, Bin Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6faab08876ff4a399700cf6c323a9921 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graph limits and exchangeable random graphs
por: Persi Diaconis, et al.
Publicado: (2008) -
Fuzzy Soft Topology Based on Generalized Intersection and Generalized Union of Fuzzy Soft Sets
por: Jingshui Ping, et al.
Publicado: (2021) -
On Laplacian Equienergetic Signed Graphs
por: Qingyun Tao, et al.
Publicado: (2021) -
On Omega Index and Average Degree of Graphs
por: Sadik Delen, et al.
Publicado: (2021) -
Locating and Identifying Codes in Circulant Graphs
por: Shu Jiao Song, et al.
Publicado: (2021)