The Largest Component of Near-Critical Random Intersection Graph with Tunable Clustering
In this paper, we study the largest component of the near-critical random intersection graph Gn,m,p with n nodes and m elements, where m=Θn which leads to the fact that the clustering is tunable. We prove that with high probability the size of the largest component in the weakly supercritical random...
Enregistré dans:
Auteurs principaux: | Shiying Huang, Bin Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6faab08876ff4a399700cf6c323a9921 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Graph limits and exchangeable random graphs
par: Persi Diaconis, et autres
Publié: (2008) -
Fuzzy Soft Topology Based on Generalized Intersection and Generalized Union of Fuzzy Soft Sets
par: Jingshui Ping, et autres
Publié: (2021) -
On Laplacian Equienergetic Signed Graphs
par: Qingyun Tao, et autres
Publié: (2021) -
On Omega Index and Average Degree of Graphs
par: Sadik Delen, et autres
Publié: (2021) -
Locating and Identifying Codes in Circulant Graphs
par: Shu Jiao Song, et autres
Publié: (2021)