Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations
The goal of this research is to compare multiple linear regression coefficient estimations with multicollinearity. In order to quantify the effectiveness of estimations by the mean of average mean square error, the ordinary least squares technique (OLS), modified ridge regression method (MRR), and...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nigerian Society of Physical Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6fae51ecbee940bd9c60bf2c4c0df6d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6fae51ecbee940bd9c60bf2c4c0df6d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6fae51ecbee940bd9c60bf2c4c0df6d42021-11-30T12:19:09ZRidge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations10.46481/jnsps.2021.3042714-28172714-4704https://doaj.org/article/6fae51ecbee940bd9c60bf2c4c0df6d42021-11-01T00:00:00Zhttps://journal.nsps.org.ng/index.php/jnsps/article/view/304https://doaj.org/toc/2714-2817https://doaj.org/toc/2714-4704 The goal of this research is to compare multiple linear regression coefficient estimations with multicollinearity. In order to quantify the effectiveness of estimations by the mean of average mean square error, the ordinary least squares technique (OLS), modified ridge regression method (MRR), and generalized Liu-Kejian method (LKM) are compared (AMSE). For this study, the simulation scenarios are 3 and 5 independent variables with zero mean normally distributed random error of variance 1, 5, and 10, three correlation coefficient levels; i.e., low (0.2), medium (0.5), and high (0.8) are determined for independent variables, and all combinations are performed with sample sizes 15, 55, and 95 by Monte Carlo simulation technique for 1,000 times in total. As the sample size rose, the AMSE decreased. The MRR and LKM both outperformed the LSM. At random error of variance 10, the MRR is the most suitable for all circumstances. O. G. ObadinaAdedayo Funmi AdedotuunO. A. OdusanyaNigerian Society of Physical SciencesarticleRidge EstimationMulticollinearityMonte-CarloSimulationsPhysicsQC1-999ENJournal of Nigerian Society of Physical Sciences, Vol 3, Iss 4 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ridge Estimation Multicollinearity Monte-Carlo Simulations Physics QC1-999 |
spellingShingle |
Ridge Estimation Multicollinearity Monte-Carlo Simulations Physics QC1-999 O. G. Obadina Adedayo Funmi Adedotuun O. A. Odusanya Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations |
description |
The goal of this research is to compare multiple linear regression coefficient estimations with multicollinearity. In order to quantify the effectiveness of estimations by the mean of average mean square error, the ordinary least squares technique (OLS), modified ridge regression method (MRR), and generalized Liu-Kejian method (LKM) are compared (AMSE). For this study, the simulation scenarios are 3 and 5 independent variables with zero mean normally distributed random error of variance 1, 5, and 10, three correlation coefficient levels; i.e., low (0.2), medium (0.5), and high (0.8) are determined for independent variables, and all combinations are performed with sample sizes 15, 55, and 95 by Monte Carlo simulation technique for 1,000 times in total. As the sample size rose, the AMSE decreased. The MRR and LKM both outperformed the LSM. At random error of variance 10, the MRR is the most suitable for all circumstances.
|
format |
article |
author |
O. G. Obadina Adedayo Funmi Adedotuun O. A. Odusanya |
author_facet |
O. G. Obadina Adedayo Funmi Adedotuun O. A. Odusanya |
author_sort |
O. G. Obadina |
title |
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations |
title_short |
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations |
title_full |
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations |
title_fullStr |
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations |
title_full_unstemmed |
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations |
title_sort |
ridge estimation's effectiveness for multiple linear regression with multicollinearity: an investigation using monte-carlo simulations |
publisher |
Nigerian Society of Physical Sciences |
publishDate |
2021 |
url |
https://doaj.org/article/6fae51ecbee940bd9c60bf2c4c0df6d4 |
work_keys_str_mv |
AT ogobadina ridgeestimationseffectivenessformultiplelinearregressionwithmulticollinearityaninvestigationusingmontecarlosimulations AT adedayofunmiadedotuun ridgeestimationseffectivenessformultiplelinearregressionwithmulticollinearityaninvestigationusingmontecarlosimulations AT oaodusanya ridgeestimationseffectivenessformultiplelinearregressionwithmulticollinearityaninvestigationusingmontecarlosimulations |
_version_ |
1718406627690807296 |