Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials

Knowing compositional motifs of nanoparticle catalysts in operando conditions is crucial towards understanding their catalytic behavior. Here, the authors develop a physics-driven machine learning approach to predict adsorption sites for a CO molecule over platinum nanoparticles in a multitude of co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joshua L. Lansford, Dionisios G. Vlachos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/6fd23d16dcac44afbf726b5db3d22040
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6fd23d16dcac44afbf726b5db3d22040
record_format dspace
spelling oai:doaj.org-article:6fd23d16dcac44afbf726b5db3d220402021-12-02T14:40:42ZInfrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials10.1038/s41467-020-15340-72041-1723https://doaj.org/article/6fd23d16dcac44afbf726b5db3d220402020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15340-7https://doaj.org/toc/2041-1723Knowing compositional motifs of nanoparticle catalysts in operando conditions is crucial towards understanding their catalytic behavior. Here, the authors develop a physics-driven machine learning approach to predict adsorption sites for a CO molecule over platinum nanoparticles in a multitude of coordination environments.Joshua L. LansfordDionisios G. VlachosNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joshua L. Lansford
Dionisios G. Vlachos
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
description Knowing compositional motifs of nanoparticle catalysts in operando conditions is crucial towards understanding their catalytic behavior. Here, the authors develop a physics-driven machine learning approach to predict adsorption sites for a CO molecule over platinum nanoparticles in a multitude of coordination environments.
format article
author Joshua L. Lansford
Dionisios G. Vlachos
author_facet Joshua L. Lansford
Dionisios G. Vlachos
author_sort Joshua L. Lansford
title Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
title_short Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
title_full Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
title_fullStr Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
title_full_unstemmed Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
title_sort infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/6fd23d16dcac44afbf726b5db3d22040
work_keys_str_mv AT joshuallansford infraredspectroscopydataandphysicsdrivenmachinelearningforcharacterizingsurfacemicrostructureofcomplexmaterials
AT dionisiosgvlachos infraredspectroscopydataandphysicsdrivenmachinelearningforcharacterizingsurfacemicrostructureofcomplexmaterials
_version_ 1718390179110060032