Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
Knowing compositional motifs of nanoparticle catalysts in operando conditions is crucial towards understanding their catalytic behavior. Here, the authors develop a physics-driven machine learning approach to predict adsorption sites for a CO molecule over platinum nanoparticles in a multitude of co...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6fd23d16dcac44afbf726b5db3d22040 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6fd23d16dcac44afbf726b5db3d22040 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6fd23d16dcac44afbf726b5db3d220402021-12-02T14:40:42ZInfrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials10.1038/s41467-020-15340-72041-1723https://doaj.org/article/6fd23d16dcac44afbf726b5db3d220402020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15340-7https://doaj.org/toc/2041-1723Knowing compositional motifs of nanoparticle catalysts in operando conditions is crucial towards understanding their catalytic behavior. Here, the authors develop a physics-driven machine learning approach to predict adsorption sites for a CO molecule over platinum nanoparticles in a multitude of coordination environments.Joshua L. LansfordDionisios G. VlachosNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joshua L. Lansford Dionisios G. Vlachos Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
description |
Knowing compositional motifs of nanoparticle catalysts in operando conditions is crucial towards understanding their catalytic behavior. Here, the authors develop a physics-driven machine learning approach to predict adsorption sites for a CO molecule over platinum nanoparticles in a multitude of coordination environments. |
format |
article |
author |
Joshua L. Lansford Dionisios G. Vlachos |
author_facet |
Joshua L. Lansford Dionisios G. Vlachos |
author_sort |
Joshua L. Lansford |
title |
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
title_short |
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
title_full |
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
title_fullStr |
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
title_full_unstemmed |
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
title_sort |
infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/6fd23d16dcac44afbf726b5db3d22040 |
work_keys_str_mv |
AT joshuallansford infraredspectroscopydataandphysicsdrivenmachinelearningforcharacterizingsurfacemicrostructureofcomplexmaterials AT dionisiosgvlachos infraredspectroscopydataandphysicsdrivenmachinelearningforcharacterizingsurfacemicrostructureofcomplexmaterials |
_version_ |
1718390179110060032 |