Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles

Paul Retif,1–3 Aurélie Reinhard,2,3 Héna Paquot,2,3 Valérie Jouan-Hureaux,2,3 Alicia Chateau,2,3 Lucie Sancey,4 Muriel Barberi-Heyob,2,3 Sophie Pinel,2,3 Thierry Bastogne2,3,5 1Unité de Physique Médicale, CHR Metz-Thionville, Ars-Laqu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Retif P, Reinhard A, Paquot H, Jouan-Hureaux V, Chateau A, Sancey L, Barberi-Heyob M, Pinel S, Bastogne T
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/6fe13d5e703b46689bd27149770d10ba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6fe13d5e703b46689bd27149770d10ba
record_format dspace
spelling oai:doaj.org-article:6fe13d5e703b46689bd27149770d10ba2021-12-02T00:31:16ZMonte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles1178-2013https://doaj.org/article/6fe13d5e703b46689bd27149770d10ba2016-11-01T00:00:00Zhttps://www.dovepress.com/monte-carlo-simulations-guided-by-imaging-to-predict-the-in-vitro-rank-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Paul Retif,1–3 Aurélie Reinhard,2,3 Héna Paquot,2,3 Valérie Jouan-Hureaux,2,3 Alicia Chateau,2,3 Lucie Sancey,4 Muriel Barberi-Heyob,2,3 Sophie Pinel,2,3 Thierry Bastogne2,3,5 1Unité de Physique Médicale, CHR Metz-Thionville, Ars-Laquenexy, 2Université de Lorraine, 3CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy, 4Institut Lumière Matière, UMR 5306, CNRS, Villeurbanne, 5INRIA-BIGS & CRAN, Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France Abstract: This article addresses the in silico–in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy. Keywords: biomedical applications of radiations, computer simulation, nanomedicine, virtual screeningRetif PReinhard APaquot HJouan-Hureaux VChateau ASancey LBarberi-Heyob MPinel SBastogne TDove Medical PressarticleBiomedical applications of radiationsComputer simulationNanomedicineVirtual screeningMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 11, Pp 6169-6179 (2016)
institution DOAJ
collection DOAJ
language EN
topic Biomedical applications of radiations
Computer simulation
Nanomedicine
Virtual screening
Medicine (General)
R5-920
spellingShingle Biomedical applications of radiations
Computer simulation
Nanomedicine
Virtual screening
Medicine (General)
R5-920
Retif P
Reinhard A
Paquot H
Jouan-Hureaux V
Chateau A
Sancey L
Barberi-Heyob M
Pinel S
Bastogne T
Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
description Paul Retif,1–3 Aurélie Reinhard,2,3 Héna Paquot,2,3 Valérie Jouan-Hureaux,2,3 Alicia Chateau,2,3 Lucie Sancey,4 Muriel Barberi-Heyob,2,3 Sophie Pinel,2,3 Thierry Bastogne2,3,5 1Unité de Physique Médicale, CHR Metz-Thionville, Ars-Laquenexy, 2Université de Lorraine, 3CRAN, UMR 7039, CNRS, Vandoeuvre-lès-Nancy, 4Institut Lumière Matière, UMR 5306, CNRS, Villeurbanne, 5INRIA-BIGS & CRAN, Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France Abstract: This article addresses the in silico–in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy. Keywords: biomedical applications of radiations, computer simulation, nanomedicine, virtual screening
format article
author Retif P
Reinhard A
Paquot H
Jouan-Hureaux V
Chateau A
Sancey L
Barberi-Heyob M
Pinel S
Bastogne T
author_facet Retif P
Reinhard A
Paquot H
Jouan-Hureaux V
Chateau A
Sancey L
Barberi-Heyob M
Pinel S
Bastogne T
author_sort Retif P
title Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
title_short Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
title_full Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
title_fullStr Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
title_full_unstemmed Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
title_sort monte carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles
publisher Dove Medical Press
publishDate 2016
url https://doaj.org/article/6fe13d5e703b46689bd27149770d10ba
work_keys_str_mv AT retifp montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT reinharda montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT paquoth montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT jouanhureauxv montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT chateaua montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT sanceyl montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT barberiheyobm montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT pinels montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
AT bastognet montecarlosimulationsguidedbyimagingtopredicttheinvitrorankingofradiosensitizingnanoparticles
_version_ 1718403681320173568