Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity

Grażyna Tokajuk,1,2 Katarzyna Niemirowicz,1 Piotr Deptuła,1,3 Ewelina Piktel,1 Mateusz Cieśluk,1 Agnieszka Z Wilczewska,4 Jan R Dąbrowski,3 Robert Bucki1 1Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 2Department of Intergrated Dentistry, Medical Uni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tokajuk G, Niemirowicz K, Deptuła P, Piktel E, Cieśluk M, Wilczewska AZ, Dąbrowski JR, Bucki R
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/70139e271e2f4264b4c77848d4274809
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Grażyna Tokajuk,1,2 Katarzyna Niemirowicz,1 Piotr Deptuła,1,3 Ewelina Piktel,1 Mateusz Cieśluk,1 Agnieszka Z Wilczewska,4 Jan R Dąbrowski,3 Robert Bucki1 1Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 2Department of Intergrated Dentistry, Medical University of Białystok, 3Department of Materials and Biomedical Engineering, Białystok University of Technology, 4Institute of Chemistry, University of Białystok, Białystok, Poland Abstract: Nanotechnology offers new tools for developing therapies to prevent and treat oral infections, particularly biofilm-dependent disorders, such as dental plaques and endodontic and periodontal diseases. Chlorhexidine (CHX) is a well-characterized antiseptic agent used in dentistry with broad spectrum activity. However, its application is limited due to inactivation in body fluid and cytotoxicity toward human cells, particularly at high concentrations. To overcome these limitations, we synthesized nanosystems composed of aminosilane-coated magnetic nanoparticles functionalized with chlorhexidine (MNP@CHX). In the presence of human saliva, MNPs@CHX displayed significantly greater bactericidal and fungicidal activity against planktonic and biofilm-forming microorganisms than free CHX. In addition, CHX attached to MNPs has an increased ability to restrict the growth of mixed-species biofilms compared to free CHX. The observed depolarization of mitochondria in fungal cells treated with MNP@CHX suggests that induction of oxidative stress and oxidation of fungal structures may be a part of the mechanism responsible for pathogen killing. Nanoparticles functionalized by CHX did not affect host cell proliferation or their ability to release the proinflammatory cytokine, IL-8. The use of MNPs as a carrier of CHX has great potential for the development of antiseptic nanosystems. Keywords: chlorhexidine, magnetic nanoparticles, antimicrobial properties, anti-biofilm