Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology.
The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is diffic...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/70153f80d41f49f28dad5fc2de9963d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:70153f80d41f49f28dad5fc2de9963d1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:70153f80d41f49f28dad5fc2de9963d12021-11-18T07:25:40ZUncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology.1932-620310.1371/journal.pone.0031813https://doaj.org/article/70153f80d41f49f28dad5fc2de9963d12012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22427808/?tool=EBIhttps://doaj.org/toc/1932-6203The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called "hidden spindle hub", proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system.Ana M RojasAnna SantamariaRainer MalikThomas Skøt JensenRoman KörnerIan MorillaDavid de JuanMartin KrallingerDaniel Aaen HansenRobert HoffmannJonathan LeesAdam ReidCorin YeatsAnja WehnerSabine EloweAndrew B CleggSøren BrunakErich A NiggChristine OrengoAlfonso ValenciaJuan A G RaneaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 3, p e31813 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ana M Rojas Anna Santamaria Rainer Malik Thomas Skøt Jensen Roman Körner Ian Morilla David de Juan Martin Krallinger Daniel Aaen Hansen Robert Hoffmann Jonathan Lees Adam Reid Corin Yeats Anja Wehner Sabine Elowe Andrew B Clegg Søren Brunak Erich A Nigg Christine Orengo Alfonso Valencia Juan A G Ranea Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
description |
The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called "hidden spindle hub", proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system. |
format |
article |
author |
Ana M Rojas Anna Santamaria Rainer Malik Thomas Skøt Jensen Roman Körner Ian Morilla David de Juan Martin Krallinger Daniel Aaen Hansen Robert Hoffmann Jonathan Lees Adam Reid Corin Yeats Anja Wehner Sabine Elowe Andrew B Clegg Søren Brunak Erich A Nigg Christine Orengo Alfonso Valencia Juan A G Ranea |
author_facet |
Ana M Rojas Anna Santamaria Rainer Malik Thomas Skøt Jensen Roman Körner Ian Morilla David de Juan Martin Krallinger Daniel Aaen Hansen Robert Hoffmann Jonathan Lees Adam Reid Corin Yeats Anja Wehner Sabine Elowe Andrew B Clegg Søren Brunak Erich A Nigg Christine Orengo Alfonso Valencia Juan A G Ranea |
author_sort |
Ana M Rojas |
title |
Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
title_short |
Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
title_full |
Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
title_fullStr |
Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
title_full_unstemmed |
Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
title_sort |
uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/70153f80d41f49f28dad5fc2de9963d1 |
work_keys_str_mv |
AT anamrojas uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT annasantamaria uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT rainermalik uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT thomasskøtjensen uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT romankorner uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT ianmorilla uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT daviddejuan uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT martinkrallinger uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT danielaaenhansen uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT roberthoffmann uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT jonathanlees uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT adamreid uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT corinyeats uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT anjawehner uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT sabineelowe uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT andrewbclegg uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT sørenbrunak uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT erichanigg uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT christineorengo uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT alfonsovalencia uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology AT juanagranea uncoveringthemolecularmachineryofthehumanspindleanintegrationofwetanddrysystemsbiology |
_version_ |
1718423480621334528 |