Signal-piloted processing and machine learning based efficient power quality disturbances recognition.
Significant losses can occur for various smart grid stake holders due to the Power Quality Disturbances (PQDs). Therefore, it is necessary to correctly recognize and timely mitigate the PQDs. In this context, an emerging trend is the development of machine learning assisted PQDs management. Based on...
Enregistré dans:
Auteur principal: | Saeed Mian Qaisar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7036da8f36594d67a5dbe17e9ed074b1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
par: Abdulhamit Subasi, et autres
Publié: (2021) -
Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
par: Xiangui Xiao, et autres
Publié: (2021) -
Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning
par: Xuelin Gu, et autres
Publié: (2021) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
par: Jing Cai, et autres
Publié: (2021) -
Recognition of Psychological Characteristics of Students’ Behavior Based on Improved Machine Learning
par: Mingchao Li
Publié: (2021)