Signal-piloted processing and machine learning based efficient power quality disturbances recognition.
Significant losses can occur for various smart grid stake holders due to the Power Quality Disturbances (PQDs). Therefore, it is necessary to correctly recognize and timely mitigate the PQDs. In this context, an emerging trend is the development of machine learning assisted PQDs management. Based on...
Guardado en:
Autor principal: | Saeed Mian Qaisar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7036da8f36594d67a5dbe17e9ed074b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
por: Abdulhamit Subasi, et al.
Publicado: (2021) -
Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
por: Xiangui Xiao, et al.
Publicado: (2021) -
Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning
por: Xuelin Gu, et al.
Publicado: (2021) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
por: Jing Cai, et al.
Publicado: (2021) -
Recognition of Psychological Characteristics of Students’ Behavior Based on Improved Machine Learning
por: Mingchao Li
Publicado: (2021)