Scale-dependent roughness parameters for topography analysis
The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in other words, the measured value depends on how the parameter was measured. Here we take advantage of this scale-dependence to develop a new framework for characterizing rough surfaces: th...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7041ad32aead4aa4a9014d124d69b16e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7041ad32aead4aa4a9014d124d69b16e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7041ad32aead4aa4a9014d124d69b16e2021-11-14T04:35:48ZScale-dependent roughness parameters for topography analysis2666-523910.1016/j.apsadv.2021.100190https://doaj.org/article/7041ad32aead4aa4a9014d124d69b16e2022-02-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666523921001367https://doaj.org/toc/2666-5239The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in other words, the measured value depends on how the parameter was measured. Here we take advantage of this scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF), variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for scale-dependent analysis of surface topography that yields metrics that are intuitively understandable.Antoine SannerWolfram G. NöhringLuke A. ThimonsTevis D.B. JacobsLars PastewkaElsevierarticleSurface roughnessAutocorrelation functionSpectral analysisVariable bandwidth methodTip convolution artifactsMaterials of engineering and construction. Mechanics of materialsTA401-492Industrial electrochemistryTP250-261ENApplied Surface Science Advances, Vol 7, Iss , Pp 100190- (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Surface roughness Autocorrelation function Spectral analysis Variable bandwidth method Tip convolution artifacts Materials of engineering and construction. Mechanics of materials TA401-492 Industrial electrochemistry TP250-261 |
spellingShingle |
Surface roughness Autocorrelation function Spectral analysis Variable bandwidth method Tip convolution artifacts Materials of engineering and construction. Mechanics of materials TA401-492 Industrial electrochemistry TP250-261 Antoine Sanner Wolfram G. Nöhring Luke A. Thimons Tevis D.B. Jacobs Lars Pastewka Scale-dependent roughness parameters for topography analysis |
description |
The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in other words, the measured value depends on how the parameter was measured. Here we take advantage of this scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF), variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for scale-dependent analysis of surface topography that yields metrics that are intuitively understandable. |
format |
article |
author |
Antoine Sanner Wolfram G. Nöhring Luke A. Thimons Tevis D.B. Jacobs Lars Pastewka |
author_facet |
Antoine Sanner Wolfram G. Nöhring Luke A. Thimons Tevis D.B. Jacobs Lars Pastewka |
author_sort |
Antoine Sanner |
title |
Scale-dependent roughness parameters for topography analysis |
title_short |
Scale-dependent roughness parameters for topography analysis |
title_full |
Scale-dependent roughness parameters for topography analysis |
title_fullStr |
Scale-dependent roughness parameters for topography analysis |
title_full_unstemmed |
Scale-dependent roughness parameters for topography analysis |
title_sort |
scale-dependent roughness parameters for topography analysis |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/7041ad32aead4aa4a9014d124d69b16e |
work_keys_str_mv |
AT antoinesanner scaledependentroughnessparametersfortopographyanalysis AT wolframgnohring scaledependentroughnessparametersfortopographyanalysis AT lukeathimons scaledependentroughnessparametersfortopographyanalysis AT tevisdbjacobs scaledependentroughnessparametersfortopographyanalysis AT larspastewka scaledependentroughnessparametersfortopographyanalysis |
_version_ |
1718429903252094976 |