Scale-dependent roughness parameters for topography analysis

The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in other words, the measured value depends on how the parameter was measured. Here we take advantage of this scale-dependence to develop a new framework for characterizing rough surfaces: th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Antoine Sanner, Wolfram G. Nöhring, Luke A. Thimons, Tevis D.B. Jacobs, Lars Pastewka
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/7041ad32aead4aa4a9014d124d69b16e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7041ad32aead4aa4a9014d124d69b16e
record_format dspace
spelling oai:doaj.org-article:7041ad32aead4aa4a9014d124d69b16e2021-11-14T04:35:48ZScale-dependent roughness parameters for topography analysis2666-523910.1016/j.apsadv.2021.100190https://doaj.org/article/7041ad32aead4aa4a9014d124d69b16e2022-02-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2666523921001367https://doaj.org/toc/2666-5239The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in other words, the measured value depends on how the parameter was measured. Here we take advantage of this scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF), variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for scale-dependent analysis of surface topography that yields metrics that are intuitively understandable.Antoine SannerWolfram G. NöhringLuke A. ThimonsTevis D.B. JacobsLars PastewkaElsevierarticleSurface roughnessAutocorrelation functionSpectral analysisVariable bandwidth methodTip convolution artifactsMaterials of engineering and construction. Mechanics of materialsTA401-492Industrial electrochemistryTP250-261ENApplied Surface Science Advances, Vol 7, Iss , Pp 100190- (2022)
institution DOAJ
collection DOAJ
language EN
topic Surface roughness
Autocorrelation function
Spectral analysis
Variable bandwidth method
Tip convolution artifacts
Materials of engineering and construction. Mechanics of materials
TA401-492
Industrial electrochemistry
TP250-261
spellingShingle Surface roughness
Autocorrelation function
Spectral analysis
Variable bandwidth method
Tip convolution artifacts
Materials of engineering and construction. Mechanics of materials
TA401-492
Industrial electrochemistry
TP250-261
Antoine Sanner
Wolfram G. Nöhring
Luke A. Thimons
Tevis D.B. Jacobs
Lars Pastewka
Scale-dependent roughness parameters for topography analysis
description The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in other words, the measured value depends on how the parameter was measured. Here we take advantage of this scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF), variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for scale-dependent analysis of surface topography that yields metrics that are intuitively understandable.
format article
author Antoine Sanner
Wolfram G. Nöhring
Luke A. Thimons
Tevis D.B. Jacobs
Lars Pastewka
author_facet Antoine Sanner
Wolfram G. Nöhring
Luke A. Thimons
Tevis D.B. Jacobs
Lars Pastewka
author_sort Antoine Sanner
title Scale-dependent roughness parameters for topography analysis
title_short Scale-dependent roughness parameters for topography analysis
title_full Scale-dependent roughness parameters for topography analysis
title_fullStr Scale-dependent roughness parameters for topography analysis
title_full_unstemmed Scale-dependent roughness parameters for topography analysis
title_sort scale-dependent roughness parameters for topography analysis
publisher Elsevier
publishDate 2022
url https://doaj.org/article/7041ad32aead4aa4a9014d124d69b16e
work_keys_str_mv AT antoinesanner scaledependentroughnessparametersfortopographyanalysis
AT wolframgnohring scaledependentroughnessparametersfortopographyanalysis
AT lukeathimons scaledependentroughnessparametersfortopographyanalysis
AT tevisdbjacobs scaledependentroughnessparametersfortopographyanalysis
AT larspastewka scaledependentroughnessparametersfortopographyanalysis
_version_ 1718429903252094976