Identification of relevant genetic alterations in cancer using topological data analysis

Rare cancer mutations are often missed using recurrence-based statistical approaches, but are usually accompanied by changes in expression. Here the authors leverage this information to uncover several elusive candidate cancer-associated genes using topological data analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Raúl Rabadán, Yamina Mohamedi, Udi Rubin, Tim Chu, Adam N. Alghalith, Oliver Elliott, Luis Arnés, Santiago Cal, Álvaro J. Obaya, Arnold J. Levine, Pablo G. Cámara
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/704bc0872a5c4264834902454745c986
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Rare cancer mutations are often missed using recurrence-based statistical approaches, but are usually accompanied by changes in expression. Here the authors leverage this information to uncover several elusive candidate cancer-associated genes using topological data analysis.