cGMP signaling pathway that modulates NF-κB activation in innate immune responses
Summary: The nuclear factor-kappa B (NF-κB) pathway is an evolutionarily conserved signaling pathway that plays a central role in immune responses and inflammation. Here, we show that Drosophila NF-κB signaling is activated via a pathway in parallel with the Toll receptor by receptor-type guanylate...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/705469bd7383460088a2bdbb5aebbb71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Summary: The nuclear factor-kappa B (NF-κB) pathway is an evolutionarily conserved signaling pathway that plays a central role in immune responses and inflammation. Here, we show that Drosophila NF-κB signaling is activated via a pathway in parallel with the Toll receptor by receptor-type guanylate cyclase, Gyc76C. Gyc76C produces cyclic guanosine monophosphate (cGMP) and modulates NF-κB signaling through the downstream Tollreceptor components dMyd88, Pelle, Tube, and Dif/Dorsal (NF-κB). The cGMP signaling pathway comprises a membrane-localized cGMP-dependent protein kinase (cGK) called DG2 and protein phosphatase 2A (PP2A) and is crucial for host survival against Gram-positive bacterial infections in Drosophila. A membrane-bound cGK, PRKG2, also modulates NF-κB activation via PP2A in human cells, indicating that modulation of NF-κB activation in innate immunity by the cGMP signaling pathway is evolutionarily conserved. |
---|